• Title/Summary/Keyword: Fe contamination

Search Result 232, Processing Time 0.031 seconds

The controversial points and a remedy on evaluation of heavy metal contamination in standard method for examination of soil in Korea. (국내 토양오염 공정시험방법중 중금속 관련 오염평가의 문제점과 개선책)

  • 오창환;유연희;이평구;박성원;이영엽
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.63-83
    • /
    • 2001
  • Heavy metals are extracted from stream sediments, roadside soils and sediments and soils and tailings from mining area using partial extraction, acid digestion and HF-digestion. Compared to amounts of heavy metals extracted using partial extraction, those extracted using acid digestion are higher by 2.0∼221 times in Cu, 2.4∼2806 times in Pb, 1.3∼121 times in Cd, 14. 1∼1300885 times in Fe, 1.2∼272 times in Mn, 1.3∼373 times in Zn, 2.2∼1735 times in Cr. There is no special relationship between the extracted amounts of heavy metals using partial extraction and those using acid digestion. However, it is possible that there is a certain relationship between those using acid digestion and those using HF-digestion. Although partial extraction, which extracts less amounts of heavy metals (Cd, Cu, Pb) from soil compared to acid digestion, is used in domestic standard method for examination of soil, domestic soil standard for heavy metals in non-agricultural and industrial areas is higher than soil standard in foreign countries which use acid digestion. For improvement of the domestic standard method for assessment of soil, it is suggested to lower the domestic soil standard for heavy metals or to change pretreatment method for extracting heavy metals from partial extraction to acid digestion with modifying the soil standard.

  • PDF

Characteristics of Heavy Metal Pollution in Contaminated Roadside Sediments in Jeonju City, Korea (전주시 도로변 퇴적물의 중금속 오염 특성)

  • Cho, Ktu-Seong
    • Journal of the Korean earth science society
    • /
    • v.24 no.8
    • /
    • pp.711-720
    • /
    • 2003
  • To study characteristics of the heavy metal pollution, sediment samples were collected at 67 sites on the roadside of Jeonju city during summer and winter, 2002. The total concentration of metals including Cd, Co, Cr, Cu, Ni, Pb, Zn, and Mn in the sediment samples were determined. The results indicate that the roadside sediments in Jeonju city have lower (1/2 to 1/7 times) concentrations of Zn, Cu, Pb and Cd than the metal concentrations previously reported for roadside soil, dust and sewage sludges in Seoul. However, the metal concentrations are higher than environmental quality criteria in soil suggested from several countries, and Zn, Cu, Pb and Cd contents are usually 2-7 times higher than the world average contents of the metals in natural soil. Although pollution index and concentrations of Cr, Ni, Pb and Zn in the roadside sediments at industrial area were usually higher than those of downtown and residential area, the metal having small vehicle- and steel-related industries had high concentrations of metals. The results of chemical partitioning analysis showed that Pb, Zn and Mn are mainly associated with carbonate/adsorbed and Fe-Mn oxide phases but that Cu is largely associated with the organic and sulfide fractions. It thus indicates that both large and small (vehicle- and steel-related) industries are main sources of heavy metal contamination. Due to high solubility of the carbonate phases by natural leaching episodes, the carbonate/adsorbed Cd, Co, Ni, Pb, Zn and Mn in the roadside sediments may serve as a potential source of contamination.

Heavy Metals in Surface Sediments from Doam Bay, Southwestern Coast of Korea (한국 남서해안 도암만 표층퇴적물의 중금속 함량 및 분포 특성)

  • CHO, HYEONG-CHAN;CHO, YEONG-GIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.4
    • /
    • pp.159-168
    • /
    • 2015
  • Forty-four surface sediments from Doam Bay were analyzed for total organic carbon (TOC), total nitrogen (TN), total metal (Al, Fe, Mn, Cr, Cu, Ni, Pb, Zn) and further chemical partitioning of metals were carried out in some samples. The TOC (0.32~3.10%) and TN (0.03~0.26%) values of the samples were similar to those of other coastal area. The C/N ratios ranged from 7.9 to 11.9 with an average 9.3 which revealed that contribution of terrestrial organic matters was relatively rare. Contents of analysed metals showed a level lower than threshold effects level (TEL) in sediment quality guidelines. Based on the chemical speciation of metals, the lattice fractions were found in the order Cr > Cu > Ni > Zn > Pb > Mn, while Mn and Pb are the ratio of the non-lattice fractions accounted for more than 50%. The average baseline values were obtained relative cumulative frequency curves and linear regression analysis. The respective baseline concentrations for Cu, Ni, Pb, Zn, Cr and Mn were 11.8, 23.1, 26.8, 76.6, 56.7, 585 mg/kg, respectively. Based on geoaccumulation index ($I_{geo}$) with a baseline values of Mn showed that face the contamination phase from estuarine stations. However, in case of Zn and Pb, although there is no sign of contamination, it could be release from sediment when there is a change in the environment, which is caused from the high ratio of non-lattice fractions.

A Preliminary Study on the Potential Source of Cadmium in the Boseong-Jangheung Mine District (전남 보성-장흥 광화대의 잠정적 카드뮴원에 대한 예비연구)

  • Heo, Chul-Ho;So, Chil-Sup;Yun, Seong-Taek;Shim, Sang-Kyun
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.61-65
    • /
    • 1997
  • Cadmium occurs as a minor element in sphalerite ((Zn, Fe)S) from the Boseong-Jangheung gold-silver mine district. We analyzed the abundance of cadmium in sphalerite using an electron probe micro analyzer (EPMA) and discussed the natural sources of cadmium in terms of bedrock geochemistry, in order to preliminarily reconnoiter the potential cadmium contamination in mine districts. Cadmium contents of sphalerites from the Au-Ag mines (Bodeok, Mundeok, Jeonbo, Boknae, Keumsan) in the Boseong-Jangheung district are considerably high, compared with cadmium contents of sphalerites (average = 0.5 wt.% Cd, maximum = 4.4 wt.% Cd) in the world. Sphalerites from the Keumsan mine (average = 9.49 wt.% Cd, maximum=11.22 wt. Cd) are highly enriched in cadmium. Our data suggest that the Boseong-Jangheung area is an important potential site of cadmium contamination in Korea. Based on bedrock geochemistry, natural causes of cadmium enrichment in sphalerite from the mine district are thought to be the mixing of cadmium leached from organic-rich, metasedimentary rocks (including coal) and/or black shales. From this study, we propose that the pinpointing of potential sites of pollution by toxic heavy metals can be done effectively through detailed reconnaisance study on mineralogical compositions of ore minerals such as sphalerite from the mine area.

  • PDF

Assessment of Groundwater Contamination Using Geographic Information System (지리정보시스템을 이용한 지하수 오염 평가)

  • 전효택;안홍일
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.3
    • /
    • pp.129-140
    • /
    • 1998
  • In this study two sites were selected to investigate groundwater contamination and spatial relationship between pollution level and its source. One is the Asan area, agricultural district where pollution sources are scattered. The other is the Gurogu area of Seoul city, industrial district where industrial complex and residential areas are located. Groundwater samples collected from these districts were analysis for chemical constituents. The attribute value files of the chemical constituents of groundwater and the spatial layers have been constructed and the pollution properties have been investigated to find out spatial relationships between the groundwater constituents and pollution sources using CIS. Relatively high contents of Si and HCO$_3$ in groundwater from the Asan area reflect the effect of water-rock interaction, whereas high contents of Cl, NO$_3$, SO$_4$and Ca in groundwater from the Gurogu area are due to the pollution of various sources. Pollution over the critical level of Korean Dinking Water Standard has been investigated from 15 sampling sites out of 40 in the Asan area, and 33 sampling sites out of 51 in the Gurogu area. There is pollution of NO$_3$, Cl, Fe, Mn, SO$_4$and Zn in groundwater from the Gurogu area, and that of NO$_3$, SO$_4$and Zn in groundwater from the Asan area. Principal pollution in both areas is NO$_3$contamination. Deep groundwater from the Asan area is not contaminated with NO$_3$except for one site and most of shallow groundwater near the potential point sources such as factory and stock farm is contaminated seriously. Groundwater from the Gurogu area has been already polluted seriously considering the fact of contamination of deep groundwater. This study reports a spatial relationship between the pollution level and pollution source using GIS.

  • PDF

Characteristics of Heavy Metal Contamination in Residual Mine Tailings Near Abandoned Metalliferous Mines in Korea (국내 폐금속광산 주변 잔류광미의 중금속 오염특성)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Lee, Jae-Saeng;Park, Chan-Won;Koh, Mun-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.222-231
    • /
    • 2005
  • Most of the tailings have been left without any management in abandoned metalliferous mines and have become the main source of heavy metal contamination of agricultural soils and crops in the these areas. To compare of environmental assessment of heavy metals in tailings derived from various 25-metalliferous mines in Korea, 3 different analysis methods such as water soluble, 0.1 M-HCl extractable, and total acid digestion method (aqua regia) were used. The chemical composition of water soluble in mine tailing were in the order ${SO_4}^{2-}>Ca^{2+}>Mn^{2+},\;Na^+,\;Al^{3+}>Mg^{2+},\;Fe^{3+}>Cl^-$. Specially, pH, EC, ${SO_4}^{2-},\;and\;Ca^{2+}$ concentrations in tailing varied considerably among the different mines. The average total concentrations of Cd, Cu, Pb, Zn, and As in tailing were 31.8, 708, 4,961, 2,275 and 3,235 mg/kg, respectively. Specially, the contents of Cd, Zn and As were higher than those of countermeasure values for soil contamination (Cd : 4, Zn : 700 and As : 15 mg/kg in soil) by Soil Environmental Conservation Act in Korea. The rates of water soluble heavy metals to total contents in tailings were in the order Cd > Zn > Cu > Pb > As. The rates of 0.1M-HCl extractable Cd, Cu, Pb, Zn, and As (1M-HCl) to total content were 17.4, 10.2, 6.5, 6.8 and 11.4% respectively. The enrichment factor of heavy metals in tailings were in the order As > Pb > Cd > Cu > Zn. The pollution index in tailing Au-Ag mine tailing were higher than those of other mine tailing. As a results of enrichment factor and pollution index for heavy metal contaminations in mine tailing of metalliferous mines, the main contaminants are mine waste materials including tailings.

Vertical Distribution and Contamination of Trace Metals in Sediments Within Hoidong Reservoir (회동저수지 호저퇴적물의 미량원소 오염 및 수직적 분산특성)

  • Lee, Pyeong-Koo;Kang, Min-Ju;Youm, Seung-Jun;Lee, Wook-Jong
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.587-604
    • /
    • 2007
  • In order to investigate the vertical variations and speciations of trace elements, and their correlations in Hoidong reservoir, sediment cores (21-41 cm below surface) and interstitial water samples were collected from five sampling locations. The total average concentrations of trace metals in sediment core samples were $232{\pm}30.8mg/kg$ for Zn, $119{\pm}272mg/kg$ for Cu, $58.4{\pm}4.1mg/kg$ for Pb, $15.7{\pm}3.3mg/kg$ for Ni and $1.6{\pm}0.3mg/kg$ for Cd. The total concentrations of trace metals in core sediments generally decreased toward the center of the Hoidong reservoir. The total concentrations of Mn, Pb and Zn decreased with depth for all the sample locations, while Cu and Fe concentrations increased. The trace metal concentrations of interstitial water sample were in the order of Fe>Mn>Cu>Zn, but Cd, Ni and Pb were not detected. The concentrations of Zn, Cu, Fe and Mn in the interstitial water samples showed a tendency of increasing toward the bottom of the core, suggesting a possible upward diffusion. This migration of trace metals may lead to their transfer to the sediment-water interface. These trace elements would be subsequently fixed onto amorphous Fe and Mn-oxides and carbonates in the topmost layer of sediment. Based on the $K_D$ values, the relative mobilities of the studied metals were in the order of Mn>Cu>Zn>Fe. Geochemical partitioning confirmed that surface enrichment by trace metals mainly resulted from a progressive increase of the concentrations in the fractions II and III. Copper, Fe, Mn and Zn concentrations of interstitial water were closely correlated with their exchangeable fractions of sediments.

Petrography and mineral chemistry of Fe-Ti oxides for the Mesozoic granitoids in South Korea : a reconsideration on the classification of magnetite- and ilmenite-series (남한의 중생대 화강암의 Fe-Ti 산화광물에 대한 암석기재와 광물화학: 계열분류에 대한 재고찰)

  • 조등룡;권성택
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.1-19
    • /
    • 1994
  • We present petrography, mode and chemistry data for Fe-Ti oxide minerals from the Mesozoic granitoids in South Korea. Magnetites from the Daebo Uurassic) granites are nearly pure $Fe_3O_4$, while those from the Bulgugsa (Cretaceous) granites contain considerable amounts of Mn and Ti. This is probably related to rapid cooling of the Bulgugsa granites compared with slow cooling of Daebo granites, which is supported by geologic relations and hornblende geobarometry results of Cho and Kwon (1994) on the emplacement depth for these granites. The composition of ilmenite does not shew appreciable difference between the Daebo and Bulgugsa granites. However, $Fe_2O_3$ contents are higher for the ilmenites coexisting with magnetite than for those without magnetite. In the temperature vs. oxygen fugacity diagram, the Bulgugsa granites plot near Ni-NiO and QFM buffer curves, although only two samples show greater than the granite solidus temperature. The mode data suggest that both magnetite- and ilmenite-series exist in Daebo and Bulgusa granites from the Kyonggi massif, Ogcheon belt and Youngnam massif, while only magnetite-series exists in Bulgugsa granites from the Kyongsang basin. Many ilmenite-series granites occur in the Ogcheon belt, which might be related to assimilation of carboniferous sediments in the belt. The proportion (44 : 56) between ilmenite- and magnetite-series for the Daebo granites is significantly different from that of Ishihara et al. (1981) who showed, using magnetic susceptibility data, predominance of ilmenite-series (more than 70%) for the Daebo granites, which can be mainly attributed to preference in sampling and to wrong assignment of age for some plutons. We also found magnetite in weakly-magnetized Kanghwa granite which was formerly classified as ilmenite-series by Ishihara et al. (1981). The proportion of ilmenite-series increases in the order of hornblende biotite granite, biotite granite and two mica granite. We conclude from these observations that the ilmeniteseries granites might have originated from contamination of carboniferous crustal material and/or such source material.

  • PDF

Potential Contamination of Soil and Groundwater from the Residual Mine Tailings in the Restored Abandoned Mine Area : Shihung Mine Area (페광산 복구지역 잔류장미로 인한 주변 지하수${\cdot}$토양 오염가능성-시흥광산 사례)

  • 정예진;이상훈
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.461-470
    • /
    • 2001
  • The Shihung mine was restored in the early 90's after abandonment for 20 yews since 1973. Although disposed mine tailings were removed and the site was replaced by an incineration plant, still some residual mine tailings remain in the places including the old mine tailing ditposal area and the adjacent agricultural area. These residual mine tailings are prone to impose an adverse impact on the soil and groundwater and needs investigation for the potential contamination. Mine tailing samples were collected from the old tailing disposal area and the iii paddy. The porewater from the mine tailing were extracted and analysed to investigate chemical changes along the reaction path. Batch leaching tests were also carried out in the laboratory to find any supporting evidence found in the field analysis. Evidence of elemental leaching was confirmed both by the mine tailing and the porewater chemistry in them. The element concentrations of Cu, Cd, Pb, Zn in the porewater exceed the standard for drinking water of Korean government and US EPA. Leaching of heavy metals from the mine tailing seem to be responsible for the contamination. In batch leaching test. heavy metals were either continuous1y released or declined rapidly. Combining the information with porewater variation with depths and the geochemical meodeling results, most of elements are controlled by dissolution and/or precipitation processes, with some solubility controlling solid phases (Cu, Pb, Fe and Zn). Batch leaching test conducted at fixed pH 4 showed much higher releases for the heavy metals up to 400 times (Zn) and this area is becoming more vulnerable to soil and groundwater pollution as precipitation pH shifts to acidic condition.

  • PDF

Hydrogeochemical characteristics of urban groundwater in Seoul

  • Lee, Ju-Hee;Yun, Seong-Taek;Kwon, Jang-Soon;Kim, Dong-Seung;Park, Seong-Sook
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.472-472
    • /
    • 2004
  • Numerous studies on urban groundwater have been carried out in many other countries. Urban groundwater shows a unique hydrologic system because of complex urban characteristics such as road pavement, sewers and public water supply systems. These urban facilities may change the characteristics of groundwater recharge but contaminate its quality as well. There have been several researches on urban groundwater in Seoul. Seoul has been industrialized very rapidly so that the city has large population. The recent population in Seoul amounts to more than ten millions, corresponding to a very high density of about 17, 000 people/km$^2$. Therefore, many factors affect the groundwater quality and quantity in Seoul. Nowadays, groundwater in Seoul is being extracted for construction, industrial use, and drinking and so on. There are 15, 714 wells in Seoul and its annual usage is 41, 425, 977m$^3$(in 2001). Therefore, systematic studies are needed to properly manage and use the groundwater in Seoul. The purposes of this study in progress are to identify geochemical characteristics of groundwater in Seoul and to determine the extent of groundwater contamination and its relationship with urban characteristics. For this study, groundwater was sampled from more than 400 preexisting wells that were randomly selected throughout the Seoul area. For all samples, major cations together with Si, Al, Fe, Pb, Hg For 200 samples among them, TCE, PCE, BTEX were also analyzed by GC. Our study shows that groundwater types of Seoul are distributed broadly from Ca-HCO$_3$ type to Ca-Cl+NO$_3$ type. The latter type indicates anthropogenic contamination. Among cations, Ca is generally high in most samples. In some samples, Na and K are dominant. The dominant anions change widely from HCO$_3$ to Cl+NO$_3$. The anion composition is considered to effectively indicate the contribution of distinct anthropogenic sources. In addition, major ions are positively proportional to total dissolved solid (TDS) except K and NO$_3$. Thus, we consider that TDS may be used as an effective indicator of the extent of pollution. However, the increase of TDS may result from increased water-rock interaction. To determine the extent of groundwater contamination, it is needed to figure out the baseline water quality in Seoul. Furthermore, detailed geochemical studies are required to find out pollution sources and their corresponding hydrochemical parameters.

  • PDF