• Title/Summary/Keyword: Fe coating

Search Result 535, Processing Time 0.027 seconds

Fundamental Study on the Formation of Nanostructured Coating Layer (나노구조 용사코팅층의 형성에 관한 기초적 연구)

  • Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.90-95
    • /
    • 2005
  • The wire-arc process is a low-cost thermal spray method simply utilizes electrical energy to melt the feedstock wire. It is more userful for field applications, especially to coat large surface area. In this paper, a special Fe-based alloy coatings by using the wire-arc process were developed. Nanoscale composite coatings were achieved either during spraying or through a post heat treatment. As-sprayed Fe-based alloy coatings had been an amorphous matrix structure, after heating to $700^{\circ}C$ for 10 minutes a solid state transformation occurred in the some fraction of amorphous matrix which resulted in the formation of nanostructured recrystallized phase. Scanning electron microscopy (SEM) and field emotional scanning electron microscope(FE-SEM) were applied to analyze the microstructure of the coatings. Additionally hardness and bend resistance of the Fe-based alloy coatings were examined, and these results were compared with those of partially stabilized zirconia(PSZ) coatings by using the plasma spray process.

  • PDF

Influence of Coating Conditions on Fe Dissolution and Dross Formation in Continuous Hot-dip Galvanizing Process (연속 용융아연도금 공정에서 Fe용출 및 드로스 발생에 미치는 도금조건의 영향)

  • 전선호;김상헌
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.364-372
    • /
    • 2003
  • In continuous galvanizing process, dissolution of iron into molten zinc results in a fairly great amount of dross. In order to decrease dross, the amount of dissolved iron of strip in molten zinc was investigated in the range of 0∼0.22%Al content, 440∼$470^{\circ}C$ strip temperature and 3∼60 sec dipping time. Uniform Fe-Al-Zn inhibition layer was formed in the coating layer/strip interface not only in the grain boundary but also in the grain of substrate with the increase of Al content in the zinc pot, while the amount of iron dissolution was decreased. Inhibition layer was unstable as the dipping time and strip temperature increased and the amount of iron dissolution increased.

Influence of Insulated Coatings on The Magnetic Properties of Fe-Based Amorphous Alloy (Fe-계 비정질 합금의 절연 코팅이 자기적 성질에 미치는 영향)

  • Kim, H.S.;Oh, Y.W.;Kim, B.G.;Jeong, S.J.;Kim, K.U.;Min, B.K.;Song, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1311-1313
    • /
    • 1994
  • The development of an insulated coating which can be used for amorphous alloys is extremely important from the practical point of view. This importance may be enhanced by the influence of the coating on the magnetic properties. The aim of the study is to show how some coating influence the magnetic properties of $Fe_{87}Zr_7B_5Ag_1(at%)$ amorphous alloy.

  • PDF

Electrochemical Properties of LiFePO4 Cathode Materials for Lithium Polymer Batteries (리튬폴리머전지용 정극활물질 LiFePO4의 전기화학적 특성)

  • Kong Ming-Zhe;Kim Hyun-Soo;Gu Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.519-523
    • /
    • 2006
  • $LiFePO_4$ has been received attention as a potential cathode material for the lithium secondary batteries. In our study, $LiFePO_4$ cathode active materials were synthesized by a solid-state reaction. It was modified by coating $TiO_2$ and carbon in order to enhance cyclic performance and electronic conductivity. $TiO_2$ and carbon coatings on $LiFePO_4$ materials enhanced the electronic conductivity and its charge/discharge capacity. For lithium polymer battery applications, $LiFePO_4$/solid polymer electrolyte (SPE)/Li and $LiFePO_{4}-TiO_{2}/SPE/Li$ cells were characterized by a cyclic voltammetry and charge/discharge cycling. The electrode with $LiFePO_{4}-carbon-TiO_{2}$ in PVDF-PC-EC-$LiClO_{4}$ electrolyte showed promising capacity of above 100 mAh/g at 1C rate.

Electrochemical Hydrogen Permeation Behaviors of Pre-Strained Fe-Mn-C TWIP Steel With or Without Zn Coating (소성인장변형 몇 아연도금된 Fe-Mn-C계 TWIP 강의 전기화학적 수소투과거동)

  • Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.297-303
    • /
    • 2023
  • This study aimed to evaluate hydrogen permeation behaviors of pre-strained twinning-induced plasticity steel with or without Zn coating using electrochemical permeation technique. In contrast to un-strained and 30% strained samples, permeation current density was measured in the 60% strained sample. Tensile pre-straining at 60% involved microstructural modifications, including a high level of dislocation density and stacking fault with a semi-coherent twin boundary, which might provide a high diffusion path for hydrogen atoms. However, reproducibility of measurements of hydrogen permeation current was low due to non-uniform deformation and localized stress concentration. On the other hand, the permeation current was not measured in pre-strained TWIP steel with Zn coating. Instead, numerous blisters with some cracks were observed on the surface of the coating layer. In locally damaged Zn coating under tensile straining, hydrogen atoms could relatively easily permeate through the coating layer. However, they were trapped at the interface between the coating layer and the substrate, which might delay hydrogen penetration into the steel substrate.

Enhanced salt coating on FeS2 surface with the addition of Li2O

  • Cheong, Hae-Won;Kang, Seung-Ho;Kim, Jong-Myong;Cho, Sung-Baek
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.198-201
    • /
    • 2012
  • The electrolytes in thermal batteries are nonconductive solids at ambient temperature, which prevent the self-discharge and corrosion. To meet severe environmental requirements and guarantee acceptable handling yields, all the pellets in cells should have adequate strength, especially for the cathodes due to their poor binding properties among FeS2 particles. By modifying the surface microstructure of FeS2 through molten-salt heat treatment, the inter-particle binding strength is greatly increased, resulting in the enhanced pellet strength and yield. The addition of Li2O also promoted the soft salt coating coverage of hard FeS2 particles, which can be explained by the enhanced wettability of the molten salt.

In-situ Observation on the Microfracture Behavior of Gavannealed Steel Sheet (합금화용융아연도금강판의 미세파괴거동에 대한 In-situ 관찰)

  • Mun Hyun-Su;Bu Hyun-Duck;Chu Yong-Ho;Ahn Byung-Kuk;Kim Young-Geun;Ahn Haeng-Keun
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.676-681
    • /
    • 2004
  • In-situ observation in SBM on the microfracture behavior of coating layer was performed for GA steel sheets that have various Fe contents and thickness of coating layer. In case of cross sectional side of coating layer that was in a tensile stress state during bending, fine perpendicular crack pre-induced during galvannealing grew and propagated rapidly toward the coating surface with the increase of strain. And then it grew and propagated along the ${\Gamma}/Fe$ matrix interface, and combined with the nearest another perpendicular crack. Consequently, flaking occurred. The more Fe content and thickness of coating layer increased, the more average crack interval and flaking resistivity increased. Exfoliation was little observed at coating surface in a tensile stress state.

Fabrications and Properties of Al/$VF_2$/$n^+$-Si(100) Structures by Dip Coating Methode (Dip Coating 법에 의한 Al/$VF_2$-TrFE/Si(100) 구조의 제작 특성)

  • Kim, Ka-Lam;Jeong, Sang-Hyun;Yun, Hyeong-Seon;Lee, Woo-Seok;Kwak, No-Won;Kim, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.20-21
    • /
    • 2008
  • Ferroelectric vinylidene fluoride-trifluoroethylene ($VF_2$-TrFE) copolymer films were directly deposited on degenerated Si ($n^+$, 0.002 $\Omega{\cdot}cm$) using by dip coating method. A 1 ~ 3 wt% diluted solution of purified vinylidene fluoride-trifluoroethylene ($VF_2$:TrFE=70:30) in a dimethylformamide (DMF) solvent were prepared and deposited on silicon wafers using dip coating method for 10 seconds. After Post-Annealing in a vacuum ambient at 100~200 $^{\circ}C$ for 60 min, upper aluminum electrodes were deposited by thermal evaporation through the shadow mask to complete the MFS structure. The ferroelectric $\beta$-phase peak of films, depending on the annealing temperature, started to show up around $125^{\circ}C$, and the intensity of the peak increased with increasing annealing temperature. Above $175^{\circ}C$, the peak started to decrease. The C-V characteristics were measured using a Precision LCR meter (HP 4284A) with frequency of 1MHz and a signal amplitude of 20 mV. The leakage-current versus electric-field characteristics was measured by mean of a pA meter/DC voltage source (HP 4140B).

  • PDF