• 제목/요약/키워드: Fe (III)

검색결과 568건 처리시간 0.028초

점토로부터 철불순물의 생물학적 제거에 미치는 탄소원의 영향

  • 이은영;조경숙;류희욱;배무
    • 한국미생물·생명공학회지
    • /
    • 제25권6호
    • /
    • pp.552-559
    • /
    • 1997
  • Fe (III) impurities in clay could be microbially removed by inhabitant dissimilatory Fe (III) reducing microorganisms. Insoluble Fe (III) in clay particles was leached out as soluble reductive form, Fe (II). The microorganisms removed from 10 to 45% of the initial Fe (III) when each sugar was supplemented to be in ranges of 1 - 5 % (w/w; sugar/clay). The microorganisms reduced 2.1 - 12.8 mol of Fe (III) per 100 mol of carbon in sugars metabolized when sugars such as glucose, maltose, and sucrose were used as sole carbon source. Bacillus sp. IRB-W and Pseudomonas sp. IRB-Y were isolated from the enrichment culture of the clay. The isolates were considered to participate in metabolizing organic compounds to fermentative intermediates with relatively little Fe (III) reduction at initial Fe (III) reduction process. By the microbial treatment, the whiteness of the clay was increased form 63.20 to 79.64, whereas the redness was obviously decreased form 13.47 to 3.55. This treatment did not cause any unfavorable modifications in mineralogical compositions of the clay.

  • PDF

펜톤 반응을 이용한 원전 증기발생기 화학세정 폐액의 고농도 Fe(III)-EDTA 분해 (Fenton Degradation of Highly Concentrated Fe(III)-EDTA in the Liquid Waste Produced by Chemical Cleaning of Nuclear Power Plant Steam Generators)

  • 조진오;목영선;김석태;정우태;강덕원;이병호;김진길
    • 공업화학
    • /
    • 제17권5호
    • /
    • pp.552-556
    • /
    • 2006
  • 본 연구에서는 70000 mg/L 가량의 고농도 철(III)-에틸렌디아민테트라아세트산(Fe(III)-EDTA)을 함유하고 있는 원전 증기발생기 화학 세정 폐액의 처리를 위해 펜톤 반응을 사용하였다. Fe(III)-EDTA 분해실험은 모사 폐액 뿐 아니라 실제 폐액을 가지고도 수행되었다. 폐액에 주입된 과산화수소의 양과 폐액의 pH가 Fe(III)-EDTA 분해에 미치는 영향이 정량적으로 평가되었고, 다양한 측면에서 고찰되었다. 분해효율이 최대가 되는 최적의 pH는 폐액에 주입된 과산화수소의 양에 의존하였다. 즉, 폐액에 주입된 과산화수소의 양이 다를 때 최대 분해효율이 얻어지는 pH가 달랐다. Fe(III)-EDTA의 분해를 위한 적정 조건은 폐액의 초기 pH가 9이고 과산화수소 주입량이 24.7 mol ($H_{2}O_{2}$)/mol (Fe(III)-EDTA)일 때였다.

Inhibitory Effect of Nitrate on Fe(III) and Humic acid reduction in Shewanella putrefaciens DK-1

  • Lee, Il-Gyu;Kim, Sang-Jin;Ahn, Tae-Young
    • Journal of Microbiology
    • /
    • 제38권3호
    • /
    • pp.180-182
    • /
    • 2000
  • The inhibitory effects of nitrate on Fe(III) and humic acid reduction were examined in Shewanella putrefaciens DK-1. Therer is no difference in Fe(III) reduction until 25 hours between cultures using Fe(III) production was decreased drastically when Fe(III) and nitrate were used as electron acceptors. The production of AHQDS(2,6-anthrahydroquinon disulfonate) showed similar patterns when AQDS alone and both AQDS and Fe(III) were used as electron acceptors. When AQDS(2,6-anthraquinon disulfonate) and nitrate were used as electron acceptors, the production of AHQDS was completely inhibited.

  • PDF

MOCVD법에 의한 Ti(IV)-Fe(III) 산화물 박막의 광전기화학적 특성 (Photoelectrochemical Property of Ti(IV)-Fe(III) Oxide Films Deposited by MOCVD)

  • 김현수;윤재홍
    • 한국표면공학회지
    • /
    • 제32권4호
    • /
    • pp.538-546
    • /
    • 1999
  • Ti(IV)-Fe(III) oxide films were formed by MOCVD technique, and their photoelectrochemical properties were examined in 0.5M N $a_2$$SO_4$ solution by a photoelectrochemical polarization test. Ti(IV)-Fe(III) oxide films deposited at 40$0^{\circ}C$ by MOCVD have crystalline structure and are all n-type semiconductors. The photocurrent and the quantum efficiency of the films increase with increasing the iron cationic fraction ($X_{Fe}$ ) in the films. The energy band gap of the films increase linearly with increasing the iron cationic fraction in the films. Ti(IV)-Fe(III) oxide film of $X_{Fe}$ /=0.60 has high photocurrent response and corrosion resistance simultaneously.

  • PDF

Anaerobic Degradation of cis-1,2-Dichloroethylene by Cultures Enriched from a Landfill Leachate Sediment

  • Chang, Young-Cheol;Jung, KwEon;Yoo, Young-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권3호
    • /
    • pp.366-372
    • /
    • 2003
  • The production of microbiologically enriched cultures that degrade cis- 1,2-dichloroethylene(DCE) under anaerobic conditions was investigated. Among 80 environmental samples, 19 displayed significant degradation of $10{\mu}M$ cis-DCE during 1 month of anaerobic incubation, and one sediment sample collected at a landfill area (Nanji-do, Seoul, Korea) showed the greatest degradation ($94\%$). When this sediment culture was subcultured repeatedly, the ability to degrade cis-DCE gradually decreased. However, under Fe(III)-reducing conditions, cis-DCE degradation by the subculture was found to be maintained effectively. In the Fe(III)-reducing subculture, vinyl chloride (VC) was also degraded at the same extent as cis-DCE No accumulation of VC during the cis-DCE degradation was observed. Thus, Fe(III)-reducing microbes might be involved in the anaerobic degradation of the chlorinated ethenes. However, the subcultures established with Fe(III) could function even in the absence of Fe(III), showing that the degradation of cis-DCE and VC was not directly coupled with the Fe(III) reduction. Consequently, the two series of enrichment cultures could not be obtained that degrade both cis-DCE and VC in the presence or absence of Fe(III). Considering the lack of VC accumulation, both cultures reported herein may involve interesting mechanism(s) for the microbial remediation of environments contaminated with chlorinated ethenes. A number of fermentative reducers (microbes) which are known to reduce Fe(III) during their anaerobic growth are potential candidates involved in cir-DCE degradation in the presence and absence of Fe(III).

Synthesis of m-Oxo and Bis( m-alkoxo) Bridged Diiron(III) Complexes Using a Tripodal Ligand, Bis(2-benzimidazolylmethy)ethanolamine

  • 곽병훈;이명수
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권1호
    • /
    • pp.65-68
    • /
    • 2000
  • A $\mu-oxo$ diiron(III) complex and two bis( $\mu-alkoxo)$ diiron(III) complexes with biomimetic tripodal ligand containing mixed N/O donor atoms were synthesized using a mononuclear iron(III) complex as starting material. Depending on the amounts and kinds of bases used, we obtained various kinds of diiron (III) complexes. The reaction of $[$Fe^{III}$(Hbbea)Cl_2]Cl$, 1, with an equivalent amount of $KO_2$ or NaOAc produced $[$Fe^{III}$_2O(Hb-bea)_2Cl_2]Cl_2$, 2. An additional equivalent amount of NaOBz or NaOAc converts complex 2 to complex 3 or complex 4 depending on the base used. The addition of two equivalent amounts of NaOBz orNaOAc directly converts complex 1 to $[$Fe^{III}$_2(bbea)_2(OBz)_2]Cl_2$, 3, or $[$Fe^{III}$_2(bbea)_2(OAc)_2]Cl_2$, 4, depending on the base used. Crystal data are as follows: [$Fe^{III}_2O(Hbbea)_2Cl_2]Cl_2$, 2: monoclinic space group $$P2_1/n$$, a = 8.421 (1) $\AA$, b = 18.416 (2) $\AA$, c = 13.736 (1) $\AA$, $\beta$ = 104.870 $(7)^{\circ}$, V = 2058.9 (4) $\AA^3$, Z = 2, R1 = 0.0469 and wR2 = 0.1201 for reflections with I > 2 ${\sigma}$(I).

Mossbauer Spectroscopic Study of La2-2xSr2xCu1-xFexO4-y(0≤x≤0.5) Solid-solution

  • Park, Jung-Chul;Byeon, Song-Ho;Kim, Don;Lee, Choong-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권1호
    • /
    • pp.97-100
    • /
    • 2004
  • Tetragonal $K_2NiF_4$-type $La_{2-2x}Sr_{2x}Cu_{1-x}Fe_xO_{4-y}$ solid-solution have been synthesized by citrate based sol-gel method. The valence state of iron was determined by Mossbauer spectroscopy and subsequent iodometric titration clearly showed that the copper ions in this solid-solution are in the mixed valence state Cu(II/III). When x ${\geq}$ 0.3, Fe(III) is competing with the mixture of Cu(II) and Cu(III) and $La_{2-2x}Sr_{2x}Cu_{1-x}Fe_xO_{4-y}$ exhibits a metallic character. No evidence for Cu(II)-O-Fe(IV) ${\leftrightarrow}$ Cu(III)-O-Fe(III) valence degeneracy was observed. In contrast, a small amount of Fe(IV) is observed with increasing x (x = 0.4 and 0.5), revealing a semiconducting behavior. These results suggest that the electronic interaction of Cu(III)-O-Fe(III) contributes greatly to the metallic character, while the electronic interaction of Cu(II)-O-Fe(IV) deteriorates the metallic character of $La_{2-2x}Sr_{2x}Cu_{1-x}Fe_xO_{4-y}$.

철환원 박테리아에 의한 금속 환원 및 광물형성 (Metal Reduction and Mineral formation by fe(III)-Reducing Bacteria Isolated from Extreme Environments)

  • Yul Roh;Hi-Soo Moon;Yungoo Song
    • 한국광물학회지
    • /
    • 제15권3호
    • /
    • pp.231-240
    • /
    • 2002
  • 미생물에 의한 금속이온의 환원은 탄소와 금속의 생지화학적 순환에 영향을 줄 뿐만 아니라 또한 금속, 방사성원소, 그리고 유기물로 오염된 지하수와 토양의 정화에 있어서 중요한 역할 가능성을 시사하고 있다. 지구의 극한 환경(예: 심해저 퇴적, 알칼리성 호수 등)에서 서식하는 철환원 박테리아를 분리하여 금속이온의 환원과 광물 형성 등의 실험에 이용하여 본 결과에 의하면, 이들 철환원 박테리아는 Fe(III), Mn(IV), Cr(VI), Co(III), and U(VI)이온 등을 환원시킬 뿐만 아니라, 자철석($Fe_3$$O_4$), 능철석($FeCO_3$), 방해석($CaCO_3$), 능망간석($MnCO_3$), 비비아나이트 [$Fe_3$($PO_4$)$_2$ .$8H_2$O], 우라니나이트(UO) 등의 광물을 형성한다. 철 환원 박테리아에 의한 광물 형성과 금속이온의 환원에 영향을 미치는 주요소는 대기의 조성, 화학 조성, 및 박테리아의 종이다. 호열성 철환원 박테리아는 철수화물과 금속이온(Co, Cr, Ni) 등을 동시에 환원시켜 금속 치환된 자철석을 합성하며, 또한 석탄회 등을 이용하여 탄산염 광물을 형성하여 대기 중의 이산화탄소를 고정하는 역할을 하기도 한다. 따라서 미생물에 의한 금속이온이 환원은 자연계에서 철과 탄소의 지화학적인 순환에 영향 미치며, 또한 미생물에 의한 자철석의 합성은 산업적으로 많은 이용가치가 있을 것으로 본다.

원자가 결합법에 의한 전이원소 착물에 대한 쌍극자모멘트의 계산 (제1보). 팔면체 $[M(III)O_3S_3]$ 형태 착물의 쌍극자모멘트의 계산 [M(III) = V(III), Cr(III), Mn(III), Fe(III), Co(III), Ru(III), Rh(III) 및 Os(III)] (Calculation of the Dipole Moments for Transition Metal Complexes by Valence Bond Method (I). Calculation of the Dipole Moments for Octahedral $[M(III)O_3S_3]$ Type Complexes [M(III) = V(III), Cr(III), Mn(III), Fe(III), Co(III), Ru(III), Rh(III) and Os(III)])

  • 안상운;고정수
    • 대한화학회지
    • /
    • 제23권4호
    • /
    • pp.198-205
    • /
    • 1979
  • 금속이온의 $d^2sp^3$ 혼성궤도함수와 리간드의 singIe basis set 궤도함수를 사용하여 팔면체 [M(II)O_3S_3]$형태 착물의 쌍극자모멘트를 계산하는 원자가결합법을 발전시켰다. [M(III)=V(III), Cr(III), Mn(III), Fe(III), Co(III), Ru(III), Rh(III) 및 Os(III)]. 이 새로운 방법에 있어서 금속이온의 valence basis sets와 리간드 궤도함수사이의 혼성계수가 같다고 가정할 필요가 없으며 이것이 근사분자궤도함수법에 의한 팔면체 전이원소 착물의 쌍극자모멘트를 계산하는 방법과 다른점이다. 원자가결합법에서는 근사분자궤도함수법에서 보다도 훨씬 쉽게 팔면체착물의 쌍극자 모멘트를 계산할 수 있으며 계산한 쌍극자 모멘트의 값이 또한 실험치 범위에든다.

  • PDF

Studies on Solvent Extraction Using Salphen for Separative Determination of Trace Fe(II) and Fe(III) in Water Samples

  • Kim, Eun-Jook;Kim, Young-Sang;Choi, Jong-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권1호
    • /
    • pp.99-103
    • /
    • 2008
  • Solvent extraction using salphen as a ligand has been investigated for the selective separation and determination of trace Fe(II) and Fe(III). A salphen ligand was synthesized, and solvent extraction variables, such as solution pH, the concentration of salphen, the type of organic solvent, auxiliary agents, oxidants and the effect of interference were optimized. Salphen is stable at pH 3-4, and Fe(III)-salphen complexes can be selectively extracted into an MIBK(4-methyl-2-pentanone) phase from an aqueous solution within this pH range. For the determination of the total amount of iron in 100 mL of aqueous solution, Fe(II) ions were completely oxidized using 0.05 mL of 3.5% H2O2 without side reactions. To evaluate its applicability, the proposed method was applied to determine trace Fe(II) and Fe(III) in several kinds of water samples. Reproducible results were obtained with RSD of less than 3.0%, and the recoveries for this reliability were obtained with 91-112%.