• Title/Summary/Keyword: Fe이온

Search Result 1,152, Processing Time 0.033 seconds

Development of an Analytical Method for the Spectrometric Simultaneous Determination of Fe2+ and Fe3+ Ions Using a Technique of Flow Injection Analysis (흐름주입분석기법을 이용한 Fe2+ 이온과 Fe3+이온의 광학적 동시정량을 위한 분석기법의 개발)

  • Hwang, Hun;Kim, Jin Ho
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.5
    • /
    • pp.419-437
    • /
    • 2002
  • An analytical method for the spectrometric simultaneous determination of the individual ions in the mix-tures of $Fe^{2+}$ and $Fe^{2+}$ ions utilizing a technique of flow injection analysis has been developed. The method was based on the oxidation reaction between $Fe^{2+}$ ion and $H_2O_2$ in an acidic medium and the subsequent formation of a red Fe$(SCN)^{3-x}_x$ ion by the complexation reaction between $Fe^{2+}$ ion and $SCN^-$ ion. Unlike the conventional methods which require separate processes for the pre-treatment of the sample solution, the current method uses the same FIA system for the pre-treatment and the analysis of the sample. The detection limit for the determination of $Fe^{2+}$ ion was found to be 6.00${\times}10^{-7}$M.

Study on the Enzyme of Basidiomycetes(I) -The Effects of Iron Ions on the Light-Induced Mitochondrial $F_0F_1-ATPase$ of Lentinus edodes- (담자균류의 효소에 관한 연구(I) -표고버섯 중의 광감응성 Mitochondrial $F_0F_1-ATPase$의 철이온 효과-)

  • Min, Tae-jin;Lee, Mi-Ae;Bae, Kang-Gyu
    • The Korean Journal of Mycology
    • /
    • v.21 no.3
    • /
    • pp.165-171
    • /
    • 1993
  • The effects of the iron ions for the light-induced mitochondrial $F_0F_1-ATPase$ of Lentinus edodes was studied. The enzyme activity was stimulated up to 202% by 0.1 mM $Fe^{2-}$ ion, but was inhibited by $Fe^{3+}\;and\;Mg^{2+}$. In the presence of 0.5 mM $Mg^{2+}$, the activity also increased 32% by 0.1 mM $Fe^{2+}$ ion, and decreased to a similar extent by $Fe^{3+}$ ion than by only $Fe^{3+}$ ion. Also, the activity was inhibited 53% by 5.0 mM $Fe^{2-}$ ion in the presence of 0.5 mM $Mg^{2+}$ ion and various concentration of $Fe^{3+}$ ion(mM). These results showed that $Fe^{2+}$ strongly stimulated the enzyme activity and its role for the enzyme was independent of $Mg^{2+}$ ion, but was dependent of $Fe^{3+}$ ion. From inactivation of the enzyme by addition of metal chelating agent, EDTA, it is suggested that the enzyme is to be metalloenzyme. The optimal pH and temperature of the enzyme in the presence of 0.1 mM $Fe^{2+}$ was 7.6 and $63^{\circ}C$, respectively.

  • PDF

A Study of the Nonstoichiometry and Physical Properties of the Nd1-xBaxFeO3-y System ($Nd_{1-x}Ba_xFeO_{3-y}$계의 비화학량론과 물리적 성질에 관한 연구)

  • Chang, Soon Ho;Yu, Gwang Hyeon;Kim, Seong Jin;Choe, Seung Cheol;Jang, Sun Ho
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.8
    • /
    • pp.547-551
    • /
    • 1994
  • A series of samples in the $Nd_{1-x}Ba_xFeO_{3-y}$ system has been prepared by heating the reactants to$1200^{\circ}C$ under an ambient atmosphere, and the solid solutions were identified by X-ray power diffraction analysis. The crystal systems of samples with x = 0.00 and 0.25 were found to be orthorhombic whose local symmetry is similiar to the distorted octahedral with orthoferrite type one, whereas those with x = 0.50 and 0.75 to be the cubic system. Since Fe ions in the solid solutions are a mixed valence state between $Fe^{3+}\;and\;Fe^{4+}$ ions, the nonstoichiometric chemical formulas could be determined from the mole ratio of $Fe^{4+}$ ion and oxygen vacacies. According to the Mossbauer spectroscopic analysis, the presence of 5-coordinated $FeO_5$ was evidenced only in the barium compounds along with $FeO_6,\;and\;FeO_4$, but not in the strontium and calcium compounds. The samples with x = 0.25 and 0.50 show a spectrum of superparamagnetism, which might be due to the formation of a domain of the ferromagnetic interaction between the $Fe^{3+}\;and\;Fe^{4+}$ ions. The electrical conductivities of all samples are within semiconducting range. Since the $Fe^{4+}$ ion acts as an electron acceptor level during the electron transfer between the Fe through intermediate $O^{2-}$ ions, the activation energy of the compounds decreases with the increment of $Fe^{4+}$ content.

  • PDF

Physicochemical Properties of Forest Soils Related to Sulfate Adsorption (황산이온의 흡착에 관여하는 산림토양의 물리화학적 특성)

  • Lee, Seung-Woo;Park, Gwan-Soo;Lee, Choong-Hwa;Kim, Eun-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.6
    • /
    • pp.371-377
    • /
    • 2004
  • Sulfate adsorption in forest soils is a process of sulfur dynamics playing an important role in plant uptake, cation movement, acid neutralization capacity and so on. The relationship between sulfate adsorption and some physicochemical properties of four forest soils was investigated. Extractable sulfate contents and sulfate adsorption capacity (SAC) in the forest soils varied much among study sites. Extractable sulfate contents were more in sub-surface soils with lower organic matter and greater Al and Fe oxides than in surface soils. The average contents of $Al_d$ and $Fe_d$ in the sub-surface soils were 8.49 and $12.45g\;kg^{-1}$, respectively. Soil pH, cation exchange capacity and clay content were positively correlated with the extractable sulfate contents and SAC. Organic carbon content, however, was negatively correlated with the extractable sulfate contents, implying the competitive adsorption of sulfate with soil organic matter. Considerably significant correlation was found between inorganic + amorphous Al and Fe oxides and the sulfate adsorption, but crystalline Al and other fractions of Fe oxide showed no correlation. Relatively close relationship between the adsorbed sulfates and soil pH, cation exchange capacity, or amorphous Al oxides indicates that the accelerated soil acidification may substantially reduce the potential for sulfate adsorption contributing to sulfur flux in forest ecosystems.

A Study on the Separation of Cesium Cations by Using Electrochemical Ion Exchanger of KNiFe(CN)6 (KNiFe(CN)6 전기화학적 이온교환체를 이용한 세슘 양이온의 분리에 관한 연구)

  • Hwang, Young Gi
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.256-263
    • /
    • 2012
  • This study was performed to investigate the separation of cesium cations by using an electrochemical ion exchanger of nickel hexacyanoferrate($KNiFe(CN)_6$) film electrode. Potential, current, and charge passing through the cyclic voltammograms were measured in singular and binary solutions of 1.0M $NaNO_3$ and 1.0M $CsNO_3$. Before and after each experiment, the structural morphology and atomic composition of $KNiFe(CN)_6$ were analyzed by SEM and EDS, respectively. The ion selectivity of $KNiFe(CN)_6$ was also observed by the voltammograms and atomic compositions measured in the solution alternated between sodium and cesium. As the result of this study, it was found that the electrically switched $KNiFe(CN)_6$ ion exchanger had the significant advantage of 40 times or longer durability than conventional organic or inorganic ion exchanger. It was also shown that the $KNiFe(CN)_6$ ion exchanger had high selectivity for cesium over sodium.

Mossbauer Study for the Cation Distribution of Co-ferrite (CoxFe1-xO4) Thin Films (Co-ferrite 박막에서 양이온 거동에 관한 Mössbauer 분광 연구)

  • Park, Jae-Yun;Park, Young-Ran;Kim, Hee-Kyung;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • The crystallographic properties and cation distribution of oxyspinels ferrite $Co_xFe_{1-x}O_4$ thin films have been explored by X-ray diffraction, vibrating sample magnetometer (VSM), and conversion electron $M\"{o}ssbauer$ spectroscopy (CEMS). Thin films are prepared by sol-gel method. Normal spinel structure is transformed to inverse spinel structure with increasing Co concentration CEMS results indicate that most of $Fe^{3+}$ ions are substituted to $Co^{3+}$ions. Accordingly $Co^{2+}$ ions on octahedral site migrate to tetrahedral site. Magnetic moment is decreased with increasing Co concentration, which means high spin $Fe^{3+}$ ions are replaced by low spin $Co^{3+}$.

Magnetic Properties and Production of Fe-N Phases by Plasma Source Ion Implantation (플라즈마 이온주입 방법에 의한 질화철 제조 및 자기적 성질)

  • 김정기;김곤호;김용현;한승희;김철성
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.1
    • /
    • pp.6-12
    • /
    • 1998
  • Fe-N(iron-nitrogen) crystal phases were prepared by nitrogen ion implantation into $\alpha$-Fe foil with Plasma Source Ion Implantation (PSII). Ion implantation time of sample is treated 15 minutes(FeN15) and 30 minutes (FeN30). The nitrogen depth profiles measured by Auger electron spectroscopy (AES) were determined to be about 12000 $\AA$ and 4000 $\AA$ for the samples of FeN15 and FeN30, respectively. The results of vibrating sample magnetometer (VSM) show that the saturation magnetization of the samples of as-implanted FeN15 and FeN30 was higher than that of pure $\alpha$-Fe foil, which may be owing to $\alpha$'-$Fe_8N$ or $\alpha$"-$Fe_{16}N_2$ phases. Accordingly this study shows the possibility of the partial formation of $\alpha$' or $\alpha$" phase in iron nitrogen produced by PSII method.II method.

  • PDF

Stabilization and Physical Properties of Ruddlesden-Popper Phase $Sr_3Mn_{2-x}Fe_xO_{7-\delta}(x{\leq}0.3)$ (Ruddlesden-Popper 상 $Sr_3Mn_{2-x}Fe_xO_{7-\delta}(x{\leq}0.3)$의 안정화 및 물성에 관한 연구)

  • Song, Min-Seok;Lee, Jai-Yeoul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.790-793
    • /
    • 2004
  • 이중의 망간 perovskite 블록을 가진 Ruddlesden-Popper 상(R-P phase) $Sr_3Mn_2O_7$ 은 공기중에서 불안정하다. 본 연구에서는 망간 이온 자리에 철 이온을 소량 치환 함으로써 R-P 상을 안정화 시켰으며 이들의 결정구조는 X-선회절 데이터를 이용하여 Rietveld 법으로 정밀화하였다. 안정화에 필요한 Fe 이온의 양은 약 x=0.15로 나타났으며 Fe이온의 양이 증가함에 따라 쉽게 안정화 되었다. 자화율 측정결과 x=0.20 시료는 120K에서 paramgnetic-antiferromagnetic 전이를 나타내었고 이 전이 온도는 치환되는 Fe이온의 양이 증가함에 따라 감소하는 경향을 나타내었다.

  • PDF

Mössbauer Study of Crystallographic and Magnetic Properties in Vanadium Ferrite(VxFe3-xO4) Thin Films (바나듐 페라이트 박막의 결정구조 및 자기적 성질에 관한 뫼스바우어 분광학적 연구)

  • Park, Jae-Yun;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • The mixed ferrite $V_xFe_{3-x}O_4$(x=0.0, 0.15, 0.5, 1.0) thin films were prepared by sol-gel method. Their crystallographic and magnetic hyperfine properties have been studied using X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and conversion electron $M\"{o}ssbauer$ spectroscopy(CEMS). The crystal structure is found to be cubic spinel throughout the series($x{\leq}1.0$), and the lattice parameter $a_0$ increases linearly with increasing V content. XRD, XSP and CEMS indicate that $V^{3+}$ substitution for $Fe^{3+}$ in B-site is superior to $V^{2+}$ substitution for $Fe^{2+}$ in B-site. It is noticeable that both quadrupole shift and hyperfine field decreases with increasing V composition, suggesting the change of local symmetry and accompanying line-broadening. The line-broadening on CEMS spectra can be explained by the distribution of magnetic hyperfine fields.

Mossbauer Studies of $Cu_{0.95}Ge_{0.95}Fe_{0.1}O_3$ (Mossbauer 분광법에 의한 $Cu_{0.95}Ge_{0.95}Fe_{0.1}O_3$의 연구)

  • 채광표;권우현;이영배
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.1
    • /
    • pp.16-21
    • /
    • 2000
  • Magnetic properties and crystallographic properties of $Cu_{0.95}Ge_{0.95}Fe_{0.1}O_3$ were studied by using x-ray diffraction, superconducting quantum interference device (SQUID) and Mossbauer spectroscopy. Our sample has orthorhombic structure and the lattice constants are a = 4.795 $\AA$, b = 8.472 $\AA$, c = 2.932 $\AA$. The spin-Peierls (SP) transition temperatures of our sample is 13 K. The Mossbauer spectra consisted with two Zeeman sextets and one doublet due to $Fe^{3+}$ions. The Zeeman sextets come from tetrahedral $Fe^{3+}$ions and the doublets come from octahedral $Fe^{3+}$ions. The jump up of magnetic hyperfine field of 2nd Zeeman sextet and the increasing of the values of quadrupole splitting and isomer shift of doublet below SP transition temperature could be interpreted related with the atomic displacements. The N el temperature is 715 K, the Debye temperature are 540 K for octahedral site and 380 K for tetrahedral site, respectively.

  • PDF