• 제목/요약/키워드: Fe(III)

검색결과 568건 처리시간 0.025초

Application of Single-Compartment Bacterial Fuel Cell (SCBFC) Using Modified Electrodes with Metal Ions to Wastewater Treatment Reactor

  • 박두현;박영근;유철
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.1120-1128
    • /
    • 2004
  • The SCBFC was composed of bilayered cathode, the outside of which was modified with $Fe^{3+}$ (graphite-Fe(III) cathode) and the inside of which was porcelain membrane, and of an anode which was modified with $Mn^{4+}$ (graphite­Mn(lV) anode). The graphite-Fe(III), graphite-Mn(IV), and porcelain membrane were designed to have micropores. The outside of the cathode was exposed to the atmosphere and the inside was contacted with porcelain membrane. In all SCBFCS the graphite-Fe(III) was used as a cathode, and graphite-Mn(IV) and normal graphite were used as anodes, for comparison of the function between normal graphite and graphite-Mn(IV) anode. The potential difference between graphite-Mn(IV) anode and graphite-Fe(III) cathode was about 0.3 volt, which is the source for the electron driving force from anode to cathode. In chemical fuel cells composed of the graphite-Mn(IV) anode and graphite-Fe(III) cathode, a current of maximal 13 mA was produced coupled to oxidation of NADH to $NAD^{+}$ the current was not produced in SCBFC with normal graphite anode. When growing and resting cells of E. coli were applied to the SCBFC with graphite-Mn(IV) anode, the electricity production and substrate consumption were 6 to 7 times higher than in the SCBFC with normal graphite anode, and when we applied anaerobic sewage sludge to SCBFC with graphite-Mn(IV) anode, the electricity production and substrate consumption were 3 to 5 times higher than in the SCBFC with normal graphite anode. These results suggest that useful electric energy might possibly be produced from SCBFC without electron mediators, electrode-active bacteria, and extra energy consumption for the aeration of catholyte, but with wastewater as a fuel.

비소제거를 위한 Fe(III)-ettringite 합성방법 및 특성 연구 (Removal of Arsenic in Synthesis Method and Characteristics of Fe(III)-ettringite)

  • 홍성혁;박혜민;최원호;박주양
    • 상하수도학회지
    • /
    • 제25권1호
    • /
    • pp.15-21
    • /
    • 2011
  • Arsenic is one of the most abundant contaminant found in waste mine tailings, because of it's carcinogenic property, the countries like United states of America and Europe have made stringent regulations which govern the concentration of arsenic in drinking water. The current study focuses on different treatment methods for removal of arsenic from waste water. Treatment method the high strength arsenic waste water is treated with Fe(III)-ettringite by co-precipitation method. Number of experiments were carried out to decide the optimal dosage of Fe(III)-ettringite to treat arsenic waste water. The Fe(III)-ettringite was synthesized by taking appropriate equivalent ratios of calcium oxide and ferric chloride in proportion to the arsenic. The best removal efficiencies of 94% were observed at a As/(Ca: Fe) ratio of 1:3. The maximum removal of arsenic was observed in pH range of 12. But as the pH increases the arsenic removal efficiency decreases as portlandite is formed in the pH above 12. The analysis of surface of precipitate conform the needle like structure of ettringite. This treatment technique has promising features such as, the chemicals required in the treatment as well as the sludge generated can be reduced. The operating pH range is in alkaline region which is advantageous over traditional treatment process which has lower pH. Also the co-precipitation not only helps in removal of arsenic but also heavy metals.

Preconcentration and Determination of Fe(III) from Water and Food Samples by Newly Synthesized Chelating Reagent Impregnated Amberlite XAD-16 Resin

  • Tokahoglu, Serife;Ergun, Hasan;Cukurovah, Alaaddin
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권7호
    • /
    • pp.1976-1980
    • /
    • 2010
  • A simple and reliable method has been developed to selectively separate and concentrate trace amounts of Fe(III) ions from water and food samples by using flame atomic absorption spectrometry. A new reagent, 5-hydroxy-4-ethyl-5,6-di-pyridin-2-yl-4,5-dihydro-2H-[1,2,4] triazine-3-thione, was synthesized and characterized by using FT-IR spectroscopy and elemental analysis. Effects of pH, concentration and volume of elution solution, sample flow rate, sample volume and interfering ions on the recovery of Fe(III) were investigated. The optimum pH was found to be 5. Eluent for quantitative elution was 10 mL of 2 M HCl. The preconcentration factor of the method, detection limit (3s/b, ${\mu}gL^{-1}$) and relative standard deviation values were found to be 25, 4.59 and 1%, respectively. In order to verify the accuracy of the method, two certified reference materials (TMDA 54.4 lake water and SRM 1568a rice flour) were analyzed. The results obtained were in good agreement with the certified values. The method was successfully applied to the determination of Fe(III) ions in water and food samples.

Pseudomonas synxantha A3가 생성하는 siderophore A3에 관한 연구 (Biochemical studies of the siderophore A3 produced by pseudomonas synxantha A3)

  • 전홍기;강호영;고철종;백형석
    • 미생물학회지
    • /
    • 제29권5호
    • /
    • pp.307-313
    • /
    • 1991
  • A yellow-green, fluorescent siderophore A3 was extracellularly produced under iron-limited growth conditions from Pseudomonas synxantha A3. The physicochemical and biological properties of siderophore A3 were examined. The approxiamte molecular weights of the Fe(III)-siderophore A3-1 complex and Fe(III)-siderophore A3-2 complex were estimated to be about 1,300 and 1,100, respectively, by Bio-gel P2 gel exclusion chromatography. The molar ratio between the siderophore and the Fe(III)was 1.08 mole. The molecular weight of the complex could be calculated with this ratio and the new values were 1,150 and 960, respectively. The binding constant(K) between thesiderophore A3 and Fe(III) that determined by displacing the iron from the Fe(III)-siderophore complex with EDTA was 4.12*10$^{18}$ at pH 5.0. Siderophore A3 appeared to have antibacterial activity on several bacterial strains, however, ferric siderophore Ae complex did not show that activity. The cytotoxicity of siderophore A3 was obtained from Human Chronic Myelogenous Leudemia K562 cells. Inhibition concentration (50%)($IC_{50}$ ) was $0.17\mu$\{g/ml}.

  • PDF

Effects of Fe(III) and Cu(II) Ions on the Autoxidation of L-Ascorbic Acid

  • Kim, Mi-Ok
    • Preventive Nutrition and Food Science
    • /
    • 제6권2호
    • /
    • pp.83-86
    • /
    • 2001
  • The autoxidation reaction of L-ascorbic acid(AsA), and, particularly, the oxidation rates of AsA in the presence of Fe(III) or Cu(II) ions were determined in water and methanol. UV spectral measurement (at 265 nm) and HPLC were used to determine the remaining amounts of AsA in water and methanol, respectively. It was found that, in the presence of metal ions, the autoxidation rate of AsA was significantly affected by the kinds of solvents used, and also by the kinds of metal ions present. Moreover, the first-order rate constants for the oxidation of non-dissociated AsA compared with dissociated-AsA were investigated. It was confirmed that the oxidation of AsA was more accelerated in the dissociated form of AsA than in the non-dissociated form of AsA in either with Fe(III) or Cu(II). It was also found that the Cu(II) at a concentration of 0.1 $\mu$M had a more significant effect on the first-order rate constants for the autoxidation of AsA than Fe(III) at 5 $\mu$M.

  • PDF

용매 추출법에 의한 폐수중 6가크롬의 원자흡수 분광분석에 관한 연구 (Studies on Atomic Absorption Spectrophotometric Analysis of Hexavalent Chromium in Waste Water by Solvent Extraction)

  • 김응표;김영상
    • 대한화학회지
    • /
    • 제30권5호
    • /
    • pp.423-432
    • /
    • 1986
  • 폐수 중의 6가크롬을 음이온 교환체인 aliquat-336(tri-caprylmethyl ammonium chloride)으로 이온쌍을 형성시켜 유기용매인 p-xylene으로 추출하여 원자흡수분광도법으로 정량하는 방법에 대하여 조사 검토하였다. Toluene을 용매로 사용하여 유기물을 제거한 폐수 100ml를 취하여 염산으로 pH 0.5 되게 산성화시킨 다음 aliquat-336을 0.01M되게 녹인 p-xylene 20ml로 6가크롬을 추출하였다. 표준물첨가법에 의해 air-acetylene 불꽃에서 용매중에 추출된 6가크롬을 정량하였다. Al(III), Fe(III), Cr(III)이온들은 6가크롬의 추출 및 흡광도 측정에 방해 하지 않았으며, Fe(III)이온이 6가크롬을 3가크롬으로 환원시키기 때문이다. 또한 유기물이 존재하면 6가크롬의 흡광도를 감소시키므로 이런 방해유기물을 toluene으로 추출 제거하였다. 최적 조건으로 분석한 결과는 96%이상의 회수율을 보여 주었고 이는 미량 분석에서 정확한 방법이라 할 수 있고, 상대평균편차가 3.95%로서 재현성도 비교적 좋았다.

  • PDF

철 및 망간 산화물로 코팅된 입자활성탄을 이용한 수용액 중 As(III) 및 As(V)의 제거 (Removal of As(III) and As(V) in Aqueous Phases by Fe and Mn Oxides Coated Granular Activated Carbon)

  • 이희용;양중석;최재영;이승목
    • 대한환경공학회지
    • /
    • 제31권8호
    • /
    • pp.619-626
    • /
    • 2009
  • 본 연구에서는 수용액상의 비소를 산화 및 흡착기작을 이용하여 제거하기 위해서 철과 망간 산화물로 코팅된 입자 활성탄 (FMOCG)을 제조하고, 이의 표면특성 및 회분식 실험을 통하여 비소제거 특성을 규명하였다. 회분식 실험에서는 네 가지 코팅매질의 비소 산화 및 흡착 동역학, pH 영향, 등온흡착실험을 실시하였다. 코팅매질의 철과 망간 함량은 FMOCG-1(178.12 Fe mg/g, 11.25 Mn mg/g)가 비교적 많은 것으로 나타났다. 비소흡착 동역학을 통하여 As(III)의 경우 산화 및 흡착을 통하여 제거됨을 확인하였다. pH 영향실험 결과 pH가 낮을수록 비소의 제거율이 높아지는 것으로 나타났다. 등온흡착실험 결과는 Langmuir isotherm에 잘 적용되었으며 As(III)보다 As(V)의 흡착량이 약간 높았으며, 최대 흡착량은 1.38~8.44 mg As(III)/g과 2.91~9.63 mg As(V)/g이었다.

Fe(III)와 Xylenol Orange의 착물형성에 대한 분광광도법적 연구 (Spectrophotometric Study of the Complex Formation of Ferric Ion with Xylenol Orange)

  • 오대섭;이선행;박정학
    • 대한화학회지
    • /
    • 제22권5호
    • /
    • pp.311-316
    • /
    • 1978
  • Fe(III)과 Xylenol Orange (XO 또는 $H_6A$)의 반응을 분광광도법으로 연구하였다. Fe(III)과 XO는 조성이 Fe(III) : XO = 2 : 1 및 1 : 1 인 두가지 착물을 형성함을 확인하였다. 2 : 1 착물은 XO보다 Fe(III)를 많이 포함한 산성에서 안정하고, 1 : 1 착물은 XO가 많이 포함된 약산성용액에서 안정하다. 흡수극대는 590nm(2 : 1)와 500nm(1 : 1)이고 몰흡광계수는 각각 $3.18{\pm}0.04{\times}10^4,\;1.32{\pm}0.03{\times}10^4$이다. pH값을 변화시키면서 측정한 두 착물의 안정도상수는 $log{\beta}_{21}=18.69{\pm}0.03,\;log{\beta}_{212}=42.08{\pm}0.09,\;log{\beta}_{11}=4.17{\pm}0.04,\;and\;log{\beta}_{113}=34.47{\pm}0.07$이었다.

  • PDF

폐리튬이온전지의 용융환원된 금속합금상의 황산침출액에서 철(III)과 구리(II)의 분리를 위한 공정 개선 (A Modified Process for the Separation of Fe(III) and Cu(II) from the Sulfuric Acid Leaching Solution of Metallic Alloys of Reduction Smelted Spent Lithium-ion Batteries)

  • ;;이만승
    • 자원리싸이클링
    • /
    • 제31권1호
    • /
    • pp.12-20
    • /
    • 2022
  • 폐리튬이온전지를 용융환원시키면 구리, 코발트, 철, 망간, 니켈 및 규소를 함유한 금속합금을 얻는다. 금속합금의 황산침출용액에서 상기 금속을 분리하기 위한 공정을 개발하여 발표하였다. 이 공정에서는 철(III)과 구리(II)를 분리하기 위해 이온성액체를 사용하였다. 본 연구에서는 이온성액체를 대체하기 위해 D2EHPA와 Cyanex 301을 추출제로 사용했다. 철(III)과 구리(II)는 황산침출액으로부터 0.5 M의 D2EHPA에 의한 3단의 교차추출 및 0.3 M의 Cyanex 301로 분리하는 것이 가능했다. 유기상으로부터 철(III)과 구리(II)의 탈거는 각각 50%와 60%의 왕수로 가능했다. 연속실험의 물질수지로부터 금속의 회수율과 순도는 99%이상으로 확인되었다.

Photocatalytic Reduction of Hexavalent Chromium Induced by Photolysis of Ferric/tartrate Complex

  • Feng, Xianghua;Ding, Shimin;Zhang, Lixian
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3691-3695
    • /
    • 2012
  • Photocatalytic reduction of hexavalent chromium (Cr(VI)) in ferric-tartrate system under irradiation of visible light was investigated. Effects of light resources, initial pH value and initial concentration of various reactants on Cr(VI) photocatalytic reduction were studied. Photoreaction kinetics was discussed and a possible photochemical pathway was proposed. The results indicate that Fe(III)-tartrate system is able to rapidly and effectively photocatalytically reduce Cr(VI) utilizing visible light. Initial pH variations resulte in the concentration changes of Fe(III)-tartrate complex in this system, and pH at 3.0 is optimal for Cr(VI) photocatalytic reduction. Efficiency of Cr(VI) photocatalytic reduction increases with increasing initial concentrations of Cr(VI), Fe(III) and tartrate. Kinetics analysis indicates that initial Fe(III) concentration affects Cr(VI) photoreduction most significantly.