• 제목/요약/키워드: Fault-Tree Analysis

검색결과 324건 처리시간 0.027초

Inter-Process Correlation Model based Hybrid Framework for Fault Diagnosis in Wireless Sensor Networks

  • Zafar, Amna;Akbar, Ali Hammad;Akram, Beenish Ayesha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.536-564
    • /
    • 2019
  • Soft faults are inherent in wireless sensor networks (WSNs) due to external and internal errors. The failure of processes in a protocol stack are caused by errors on various layers. In this work, impact of errors and channel misbehavior on process execution is investigated to provide an error classification mechanism. Considering implementation of WSN protocol stack, inter-process correlations of stacked and peer layer processes are modeled. The proposed model is realized through local and global decision trees for fault diagnosis. A hybrid framework is proposed to implement local decision tree on sensor nodes and global decision tree on diagnostic cluster head. Local decision tree is employed to diagnose critical failures due to errors in stacked processes at node level. Global decision tree, diagnoses critical failures due to errors in peer layer processes at network level. The proposed model has been analyzed using fault tree analysis. The framework implementation has been done in Castalia. Simulation results validate the inter-process correlation model-based fault diagnosis. The hybrid framework distributes processing load on sensor nodes and diagnostic cluster head in a decentralized way, reducing communication overhead.

Direct fault-tree modeling of human failure event dependency in probabilistic safety assessment

  • Ji Suk Kim;Sang Hoon Han;Man Cheol Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.119-130
    • /
    • 2023
  • Among the various elements of probabilistic safety assessment (PSA), human failure events (HFEs) and their dependencies are major contributors to the quantification of risk of a nuclear power plant. Currently, the dependency among HFEs is reflected using a post-processing method in PSA, wherein several drawbacks, such as limited propagation of minimal cutsets through the fault tree and improper truncation of minimal cutsets exist. In this paper, we propose a method to model the HFE dependency directly in a fault tree using the if-then-else logic. The proposed method proved to be equivalent to the conventional post-processing method while addressing the drawbacks of the latter. We also developed a software tool to facilitate the implementation of the proposed method considering the need for modeling the dependency between multiple HFEs. We applied the proposed method to a specific case to demonstrate the drawbacks of the conventional post-processing method and the advantages of the proposed method. When applied appropriately under specific conditions, the direct fault-tree modeling of HFE dependency enhances the accuracy of the risk quantification and facilitates the analysis of minimal cutsets.

결함수분석법과 퍼지논리를 이용한 FMECA 평가 (FMECA using Fault Tree Analysis (FTA) and Fuzzy Logic)

  • 김동진;신준석;김형준;김진오;김형철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1529-1532
    • /
    • 2007
  • Failure Mode, Effects, and Criticality Analysis (FMECA) is an extension of FMEA which includes a criticality analysis. The criticality analysis is used to chart the probability of failure modes against the severity of their consequences. The result highlights failure modes with relatively high probability and severity of consequences, allowing remedial effort to be directed where it will produce the greatest value. However, there are several limitations. Measuring severity of failure consequences is subjective and linguistic. Since The result of FMECA only gives qualitative and quantitative informations, it should be re-analysed to prioritize critical units. Fuzzy set theory has been introduced by Lotfi A. Zadeh (1965). It has extended the classical set theory dramatically. Based on fuzzy set theory, fuzzy logic has been developed employing human reasoning process. IF-THEN fuzzy rule based assessment approach can model the expert's decision logic appropriately. Fault tree analysis (FTA) is one of most common fault modeling techniques. It is widely used in many fields practically. In this paper, a simple fault tree analysis is proposed to measure the severity of components. Fuzzy rule based assessment method interprets linguistic variables for determination of critical unit priorities. An rail-way transforming system is analysed to describe the proposed method.

  • PDF

A study on the Design Techniques and Analysis of Fault-Tolerant Computers

  • Cho, Jai-Rip
    • 품질경영학회지
    • /
    • 제21권1호
    • /
    • pp.78-95
    • /
    • 1993
  • The art of designing and analyzing fault-tolerant computers is surveyed with special emphasis on problems of analyzing the behavior of computers that have autonomous repair capability. The survey covers the following topics : (1) general issues in computer reliability, (2) fault-tolerance state relations and requirements, (3) computational hierarchy, (4) fault characteristics, (5) fault diagnosis, (6) fault-tolerance schemes for logic network and machines, (7) fault-coverage effects, and (8) fault-tree analysis of coverage. This paper does not include techniques for verifying nonredundant hardware or system software designs or for verifying the correctness of application programs.

  • PDF

재난시스템에서 사용하기 위한 인적요인 위험 모델의 개발 (Development of Human Factor Risk Model for Use in Disaster System A Study on Safety Analysis)

  • 박종훈
    • 한국재난정보학회:학술대회논문집
    • /
    • 한국재난정보학회 2022년 정기학술대회 논문집
    • /
    • pp.227-228
    • /
    • 2022
  • 전통적인 HRA(Human Reliability Analysis)방법은 특정 애플리케이션 또는 산업을 염두에 두고 있으며. 또한 이러한 방법은 종종 복잡하며, 시간이 많이 걸리고 적용하는 데 비용이 많이 들며 직접 비교하기에는 적합하지 않다. 제안된 HFHM(Human Factors Hazard Model: 인적 요인 위험 모델)은 기검증되고 시간 테스트를 거친 FTA(Fault Tree Analysis:결함 트리 분석)및 ETA(Event Tree Analysis:이벤트 트리 분석)의 확률 분석 도구 및 새로 개발된 HEP(Human Error Probability:인적 오류 확률)예측 도구와 통합되고, 인간과 관련된 PSF(Performance Shaping Factors:성능 형성 요인)를 중심으로 새로운 접근 방식으로 개발되었다. 인간-시스템은 상호작용으로 인한 재난사고 가능성을 모델링하는 위험분석 접근법 HFHM은 다음과 같은 상용 소프트웨어 도구 내에서 예시되고 자동화된다. HFHM에서 생성된 데이터는 SE 분석가 및 설계에 대한 표준화된 가이드로 사용될 수 있다. 본 연구에서는 인적 위험을 예측하는 이 새로운 접근 방식을 통해, 전체 시스템에 대한 포괄적인 재난안전 분석을 가능하게 한다.

  • PDF

원자력발전소의 물리적방호를 위한 핵심구역파악 규칙 개발 및 적용 (Vital Area Identification Rule Development and Its Application for the Physical Protection of Nuclear Power Plants)

  • 정우식;황미정;강민호
    • 한국안전학회지
    • /
    • 제32권3호
    • /
    • pp.160-171
    • /
    • 2017
  • US national research laboratories developed the first Vital Area Identification (VAI) method for the physical protection of nuclear power plants that is based on Event Tree Analysis (ETA) and Fault Tree Analysis (FTA) techniques in 1970s. Then, Korea Atomic Energy Research Institute proposed advanced VAI method that takes advantage of fire and flooding Probabilistic Safety Assessment (PSA) results. In this study, in order to minimize the burden and difficulty of VAI, (1) a set of streamlined VAI rules were developed, and (2) this set of rules was applied to PSA fault tree and event tree at the initial stage of VAI process. This new rule-based VAI method is explained, and its efficiency and correctness are demonstrated throughout this paper. This new rule-based VAI method drastically reduces problem size by (1) performing PSA event tree simplification by applying VAI rules to the PSA event tree, (2) calculating preliminary prevention sets with event tree headings, (3) converting the shortest preliminary prevention set into a sabotage fault tree, and (4) performing usual VAI procedure. Since this new rule-based VAI method drastically reduces VAI problem size, it provides very quick and economical VAI procedure. In spite of an extremely reduced sabotage fault tree, this method generates identical vital areas to those by traditional VAI method. It is strongly recommended that this new rule-based VAI method be applied to the physical protection of nuclear power plants and other complex safety-critical systems such as chemical and military systems.

디지털 원자로보호계통 불가용도 평가 (An Unavailability Evaluation for a Digital Reactor Protection System)

  • 이동영;최종균;김지영;유준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.81-83
    • /
    • 2005
  • The Reactor Protection System (RPS) is a very important system in a nuclear power plant because the system shuts down the reactor to maintain the reactor core integrity and the reactor coolant system pressure boundary if the plant conditions approach the specified safety limits. This paper describes the unavailability assessment of a digital reactor protection system using the fault tree analysis technique. The fault tree technique can be expressed in terms of combinations of the basic event failures. In this paper, a prediction method of the hardware failure rate is suggested for a digital reactor protection system. and applied to the reactor protection system being developed in Korea.

  • PDF

해저 유정 제어 시스템에서의 누수 경로 FTA 분석 (FTA of Leakage Path in Subsea X-mas Tree System)

  • 유원우;박민선;양영순;류원선;장범선
    • 한국해양공학회지
    • /
    • 제27권3호
    • /
    • pp.85-90
    • /
    • 2013
  • The growing need for energy (oil and gas) has led to offshore resource development. As a reflection of this trend, there have been many advances in the technologies used for the subsea production systems that make offshore resource development possible. As the technologies for subsea production systems continue to grow, a subsea X-mas tree, the core equipment in a subsea production system, is required to have more functions than before. Generally, these complex functions lead to a change in its configuration. Therefore, this paper investigates a change in a subsea X-mas tree system to enhance system understanding, and conducts a leakage path analysis of a subsea X-mas tree system. Utilizing the recent configuration of the subsea X-mas tree, an identification of the leakage path and a quantitative risk analysis for the leakage using an FTA (fault tree analysis) are conducted.

Reliability analysis of nuclear safety-class DCS based on T-S fuzzy fault tree and Bayesian network

  • Xu Zhang;Zhiguang Deng;Yifan Jian;Qichang Huang;Hao Peng;Quan Ma
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1901-1910
    • /
    • 2023
  • The safety-class (1E) digital control system (DCS) of nuclear power plant characterized structural multiple redundancies, therefore, it is important to quantitatively evaluate the reliability of DCS in different degree of backup loss. In this paper, a reliability evaluation model based on T-S fuzzy fault tree (FT) is proposed for 1E DCS of nuclear power plant, in which the connection relationship between components is described by T-S fuzzy gates. Specifically, an output rejection control system is chosen as an example, based on the T-S fuzzy FT model, the key indicators such as probabilistic importance are calculated, and for a further discussion, the T-S fuzzy FT model is transformed into Bayesian Network(BN) equivalently, and the fault diagnosis based on probabilistic analysis is accomplished. Combined with the analysis of actual objects, the effectiveness of proposed method is proved.

Dynamic reliability analysis framework using fault tree and dynamic Bayesian network: A case study of NPP

  • Mamdikar, Mohan Rao;Kumar, Vinay;Singh, Pooja
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1213-1220
    • /
    • 2022
  • The Emergency Diesel Generator (EDG) is a critical and essential part of the Nuclear Power Plant (NPP). Due to past catastrophic disasters, critical systems of NPP like EDG are designed to meet high dependability requirements. Therefore, we propose a framework for the dynamic reliability assessment using the Fault Tree and the Dynamic Bayesian Network. In this framework, the information of the component's failure probability is updated based on observed data. The framework is powerful to perform qualitative as well as quantitative analysis of the system. The validity of the framework is done by applying it on several NPP systems.