• Title/Summary/Keyword: Fault protection wire

Search Result 17, Processing Time 0.021 seconds

Arc Fault Circuit Interrupter Design using Microprocessor (마이크로프로세서를 이용한 아크결함 차단기 설계)

  • Yoon, Kwang-Ho;Ban, Gi-Jong;Lee, Hyo-Jik;Park, Byung-Suk;Nam, Moon-Hyon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.12-18
    • /
    • 2007
  • As an arc fault interrupter, the AFCI mentioned in this paper has been designed to detect and interrupt arc faults due to wire deterioration, insulation, wire damage, loose connection, and excessive mechanical damage. Since AFCI is digital and uses mechanical and electric stress, the length of interruption against overload and over-current is much shorter than the current bi-metal method. Therefore, the risk of electrical fires has been reduced.

An Improvement of Digital Distance Relaying Algorithm on Underground Transmission Cables (지중송전케이블룡 디지털 거리계전 알고리즘 개선)

  • Ha, Che-Ung;Lee, Jong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.12
    • /
    • pp.595-601
    • /
    • 2000
  • This paper describes the improvement method of distance relaying algorithm for the underground transmission cables. Distance relaying algorithms have been mainly developing to protect the overhead transmission lines than the underground cables. If the cable systems are directly protected using distance relaying algorithm developed for overhead line without any improvement, there will be really occurred many misoperation in cable systems, because the cable systems consist of the conductor, the sheath, several grounding method, cable cover protection units(CCPUs), and grounding wire. Accordingly, the complicated phenomena are occurred, if there is a fault in cable systems. Therefore, to develope a correct distance relaying algorithm, such cable characteristics should be taken into account. This paper presents the process to improve distance relaying algorithm which is now used. REal cable system was selected to establish modeling in EMTP and ATP Draw. It was discovered through the detailed simulation during the fault that the large error existed between impedance measured at the relay point and real impedance is due to the resistance of grounding wire in each grounding method. And also compensation factor obtained by the simulation is proposed in this paper. It is proved that the factor proposed can fairly improve the accuracy of impedance at the relay point. It is evaluated that the protective ability will be really much improved, if the algorithm proposed in this paper is applied for cable systems of utility.

  • PDF

A Study on the Protection System on the Electric Railways (전철급전회로 보호시스템에 관한 연구)

  • Chang, Sang-Hoon;Lee, Chang-Moo;Han, Moon-Seob;Oh, Kwang-Hae;Shin, Han-Soon;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1166-1169
    • /
    • 1998
  • The Load characteristic of electric railway requires the power demand of the high capacity which amplitude is spacial-temporally fluctuated due to frequent starting and stopping with large tractive force. The conventional electric railway mainly consists of the resistance controlled and the thyristor controlled locomotives, are compensated for their bad characteristics of the power factor$(70\sim80%)$ with installation of another capacitor improving power factor at the substation. Since 1994, VVVF train car with good characteristics of power factor(100%) have been introduced and operated in Kwa-Chon Line. From the present technical tendency, it is judged that introduction of the locomotive with various controlled methods is necessary. The protective equipments installed at the substation are complicated and various aspects to detect faults and reduce their extension, so the universal countermeasures are required. Specially in the case of the fault occurrence it is difficult to calculate the fault location because of the change in the contactline constant according to modifying the characteristics of the contactline (the dualized catenary wire and extension, etc), so much time is required for the detection of fault location. In BT-fed method distance-relays and fault-locators are not installed, we have so many difficulties in the quick accident recovery.

  • PDF

A study on Protection Coordination Method for Electric Vehicle Charging Facility based on the Wireless Power Transmission (무선전력전송 전기충전설비용 전원공급장치의 최적운용방안에 관한 연구)

  • Ryu, Kyung-Sang;Kim, Byungki;Kim, Dae-Jin;Jang, Moon-Seok;Rho, Daeseok;Ko, Hee-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.42-51
    • /
    • 2017
  • This paper deals with the power supply facility providing wireless power transmission for a type of electric vehicles called the on-line electric vehicle(OLEV) and proposes optimal protection coordination methods which analyze the faultsin the 60Hz and 20kHz bands using PSCAD/EMTDC, which is the typical commercial software for the distribution system. The simulation results show that the proposed methods can reduce the fault current by introducing an NGR (Neutral Ground Resistor) in the 60Hz band and prevent the malfunctioning of the protection device by installing a CT in the neutral wire in the 20kHz band when a ground fault occurs.

A study on the bonding properties of YBCO coated conductors with stainless steel stabilizer (스테인레스 강 안정화 YBCO 초전도선재의 접합 특성에 관한 연구)

  • Kim, Tae-Hyung;Oh, Sang-Soo;Song, Kyu-Jeong;Kim, Ho-Sup;Ko, Rock-Kil;Shin, Hyung-Seop
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.262-263
    • /
    • 2005
  • For mechanical and electrical stability and environment protection, Cu and stainless steel stabilizer is laminated to Ag layer to produce a composite neutral-axis(N-A) architecture in which the YBCO layer is centered between the oxide buffered metallic substrate and stabilizer strip lamination. this architecture allows the wire to meet operational requirements including stresses at cryogenic temperature, winding tensions, mechanical bending requirements thermal and electrical stability under fault conditions. we have experimentally studied mechanical properties of laminated stainless steel stabilizer on YBCO coated conductors. we have laminated YBCO coated conductors by continuous dipping soldering process. we have investigated lamination interface between solder and stabilizer, YBCO coated conductor. we evaluated bonding properties tensile / shear bonding strength, peeling strength laminated YBCO coated conductors.

  • PDF

A study on the bonding properties of YBCO coated conductors with stabilizer tape (안정화 선재의 YBCO 초전도 접합 특성)

  • Kim Tae-Hyung;Oh Sang-Soo;Ha Dong-Woo;Kim Ho-Sup;Ko Rock-Kil;Shin Hyung-Seop;Park Kyung-Chae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.3
    • /
    • pp.23-26
    • /
    • 2006
  • For mechanical and electrical stability and environment protection. Cu and stainless steel stabilizers are laminated to a Ag layer to produce a composite neutral-axis(N-A) architecture in which the YBCO layer is centered between the oxide buffered metallic substrate and stabilizer strip lamination. This architecture allows the wire to meet operational requirements including stresses at cryogenic temperature. winding tensions as well as mechanical bending requirements including thermal and electrical stability under fault current conditions. We have experimentally studied mechanical properties of the laminated stainless steel and Cu stabilizers on YBCO coated conductors. We have laminated YBCO coated conductors by continuous dipping soldering process. We have investigated lamination interface between solder and stabilizer of the YBCO coated conductor. We evaluated bonding properties. tensile / shear bonding strength. and peeling strength laminated YBCO coated conductors.

A study on the properties of SmBCO coated conductors with stabilizer tape (SmBCO 고온 초전도 선재의 안정화재 특성)

  • Kim, Tae-Hyung;Oh, Sang-Soo;Kim, Ho-Sup;Ko, Rock-Kil;Song, Kyu-Jeong;Ha, Hong-Soo;Lee, Nam-Jin;Park, Kyung-Chae;Ha, Dong-Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.9-12
    • /
    • 2007
  • In this study. we searched for the mechanical and electrical properties of laminated coated conductors with stabilizer tape. Stabilizer tape plays a role for mechanical and electrical stability and environmental protection. Cu material stabilizer was laminated to Ag capping layer on SmBCO conductor layer. This architecture allows the wire to meet operational requirements including the stressless at cryogenic temperature and winding tension as well as mechanical bending requirements including thermal and electrical stability under fault current conditions. First, we have experimentally studied mechanical bonding properties of the laminated Cu stabilizers on SmBCO coated conductors. We have laminated SmBCO coated conductors by continuous dipping soldering process, Second, we have investigated electrical properties of the SmBCO coated conductors with stabilizer lamination. We evaluated bonding properties, peeling strength and critical current for laminated SmBCO coated conductors with Cu stabilizers.