• Title/Summary/Keyword: Fault mitigation

Search Result 54, Processing Time 0.026 seconds

Landslide Susceptibility Analysis of Clicap, Indonesia

  • Kim, I. J.;Lee, S.;Choi, J. W.;Soedradjat, Gatot Moch
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.141-143
    • /
    • 2003
  • The aim of this study is to evaluate the susceptibility of landslides at Clicap area, Indonesia , using a Geographic Information System (GIS). Landslide locations were identified from field surveys. The topographic and geological map were collected and constructed into a spatial database using GIS. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography, were calculated from the topographic database and lihology and fault was extracted from the geological database. Then landslide susceptibility was analyzed using the landslide-occurrence factors by likelihood methods. The results of the analysis were verified using the landslide location data. The GIS was used to analyze the vast amount of data efficiently . The results can be used to reduce associated hazards, and to plan land use and construction.

  • PDF

Mitigation of Potential-Induced Degradation (PID) for PERC Solar Cells Using SiO2 Structure of ARC Layer (반사방지막(ARC)의 SiO2 구조에 따른 PERC 태양전지 PID 열화 완화 상관관계 연구)

  • Oh, Kyoung Suk;Park, Ji Won;Chan, Sung Il
    • Current Photovoltaic Research
    • /
    • v.8 no.4
    • /
    • pp.114-119
    • /
    • 2020
  • In this study, Mitigation of Potential-induced degradation (PID) for PERC solar cells using SiO2 Structure of ARC layer. The conventional PID test was conducted with a cell-level test based on the IEC-62804 test standard, but a copper PID test device was manufactured to increase the PID detection rate. The accelerated aging test was conducted by maintaining 96 hours with a potential difference of 1000 V at a temperature of 60℃. As a result, the PERC solar cell of SiO2-Free ARC structure decreased 22.11% compared to the initial efficiency, and the PERC solar cell of the Upper-SiO2 ARC structure decreased 30.78% of the initial efficiency and the PID reliability was not good. However, the PERC solar cell with the lower-SiO2 ARC structure reduced only 2.44%, effectively mitigating the degradation of PID. Na+ ions in the cover glass generate PID on the surface of the PERC solar cell. In order to prevent PID, the structure of SiNx and SiO2 thin films of the ARC layer is important. SiO2 thin film must be deposited on bottom of ARC layer and the surface of the PERC solar cell N-type emitter to prevent surface recombination and stacking fault defects of the PERC solar cell and mitigated PID degradation.

Vital Area Identification for the Physical Protection of Nuclear Power Plants during Low Power and Shutdown Operation (원자력발전소 정지저출력 운전 기간의 물리적방호를 위한 핵심구역파악)

  • Kwak, Myung Woong;Jung, Woo Sik;Lee, Jeong-ho;Baek, Min
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.107-115
    • /
    • 2020
  • This paper introduces the first vital area identification (VAI) process for the physical protection of nuclear power plants (NPPs) during low power and shutdown (LPSD) operation. This LPSD VAI is based on the 3rd generation VAI method which very efficiently utilizes probabilistic safety assessment (PSA) event trees (ETs). This LPSD VAI process was implemented to the virtual NPP during LPSD operation in this study. Korea Atomic Energy Research Institute (KAERI) had developed the 2nd generation full power VAI method that utilizes whole internal and external (fire and flooding) PSA results of NPPs during full power operation. In order to minimize the huge burden of the 2nd generation full power VAI method, the 3rd generation full power VAI method was developed, which utilizes ETs and minimal PSA fault trees instead of using the whole PSA fault tree. In the 3rd generation full power VAI method, (1) PSA ETs are analyzed, (2) minimal mitigation systems for avoiding core damage are selected from ETs by calculating system-level target sets and prevention sets, (3) relatively small sabotage fault tree that has the systems in the shortest system-level prevention set is composed, (4) room-level target sets and prevention sets are calculated from this small sabotage fault tree, and (5) the rooms in the shortest prevention set are defined as vital areas that should be protected. Currently, the 3rd generation full power VAI method is being employed for the VAI of Korean NPPs. This study is the first development and application of the 3rd generation VAI method to the LPSD VAI of NPP. For the LPSD VAI, (1) many LPSD ETs are classified into a few representative LPSD ETs based on the functional similarity of accident scenarios, (2) a few representative LPSD ETs are simplified with some VAI rules, and then (3) the 3rd generation VAI is performed as mentioned in the previous paragraph. It is well known that the shortest room-level prevention sets that are calculated by the 2nd and 3rd generation VAI methods are identical.

Distributional Characteristics of Fault Segments in Cretaceous and Tertiary Rocks from Southeastern Gyeongsang Basin (경상분지 남동부 일대의 백악기 및 제3기 암류에서 발달하는 단층분절의 분포특성)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.109-120
    • /
    • 2018
  • The distributional characteristics of fault segments in Cretaceous and Tertiary rocks from southeastern Gyeongsang Basin were derived. The 267 sets of fault segments showing linear type were extracted from the curved fault lines delineated on the regional geological map. First, the directional angle(${\theta}$)-length(L) chart for the whole fault segments was made. From the related chart, the general d istribution pattern of fault segments was derived. The distribution curve in the chart was divided into four sections according to its overall shape. NNE, NNW and WNW directions, corresponding to the peaks of the above sections, indicate those of the Yangsan, Ulsan and Gaeum fault systems. The fault segment population show near symmetrical distribution with respect to $N19^{\circ}E$ direction corresponding to the maximum peak. Second, the directional angle-frequency(N), mean length(Lm), total length(Lt) and density(${\rho}$) chart was made. From the related chart, whole domain of the above chart was divided into 19 domains in terms of the phases of the distribution curve. The directions corresponding to the peaks of the above domains suggest the directions of representative stresses acted on rock body. Third, the length-cumulative frequency graphs for the 18 sub-populations were made. From the related chart, the value of exponent(${\lambda}$) increase in the clockwise direction($N10{\sim}20^{\circ}E{\rightarrow}N50{\sim}60^{\circ}E$) and counterclockwise direction ($N10{\sim}20^{\circ}W{\rightarrow}N50{\sim}60^{\circ}W$). On the other hand, the width of distribution of lengths and mean length decrease. The chart for the above sub-populations having mutually different evolution characteristics, reveals a cross section of evolutionary process. Fourth, the general distribution chart for the 18 graphs was made. From the related chart, the above graphs were classified into five groups(A~E) according to the distribution area. The lengths of fault segments increase in order of group E ($N80{\sim}90^{\circ}E{\cdot}N70{\sim}80^{\circ}E{\cdot}N80{\sim}90^{\circ}W{\cdot}N50{\sim}60^{\circ}W{\cdot}N30{\sim}40^{\circ}W{\cdot}N40{\sim}50^{\circ}W$) < D ($N70{\sim}80^{\circ}W{\cdot}N60{\sim}70^{\circ}W{\cdot}N60{\sim}70^{\circ}E{\cdot}N50{\sim}60^{\circ}E{\cdot}N40{\sim}50^{\circ}E{\cdot}N0{\sim}10^{\circ}W$) < C ($N20{\sim}30^{\circ}W{\cdot}N10{\sim}20^{\circ}W$) < B ($N0{\sim}10^{\circ}E{\cdot}N30{\sim}40^{\circ}E$) < A ($N20{\sim}30^{\circ}E{\cdot}N10{\sim}20^{\circ}E$). Especially the forms of graph gradually transition from a uniform distribution to an exponential one. Lastly, the values of the six parameters for fault-segment length were divided into five groups. Among the six parameters, mean length and length of the longest fault segment decrease in the order of group III ($N10^{\circ}W{\sim}N20^{\circ}E$) > IV ($N20{\sim}60^{\circ}E$) > II ($N10{\sim}60^{\circ}W$) > I ($N60{\sim}90^{\circ}W$) > V ($N60{\sim}90^{\circ}E$). Frequency, longest length, total length, mean length and density of fault segments, belonging to group V, show the lowest values. The above order of arrangement among five groups suggests the interrelationship with the relative formation ages of fault segments.

Seismic fragility curves for a concrete bridge using structural health monitoring and digital twins

  • Rojas-Mercedes, Norberto;Erazo, Kalil;Di Sarno, Luigi
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.503-515
    • /
    • 2022
  • This paper presents the development of seismic fragility curves for a precast reinforced concrete bridge instrumented with a structural health monitoring (SHM) system. The bridge is located near an active seismic fault in the Dominican Republic (DR) and provides the only access to several local communities in the aftermath of a potential damaging earthquake; moreover, the sample bridge was designed with outdated building codes and uses structural detailing not adequate for structures in seismic regions. The bridge was instrumented with an SHM system to extract information about its state of structural integrity and estimate its seismic performance. The data obtained from the SHM system is integrated with structural models to develop a set of fragility curves to be used as a quantitative measure of the expected damage; the fragility curves provide an estimate of the probability that the structure will exceed different damage limit states as a function of an earthquake intensity measure. To obtain the fragility curves a digital twin of the bridge is developed combining a computational finite element model and the information extracted from the SHM system. The digital twin is used as a response prediction tool that minimizes modeling uncertainty, significantly improving the predicting capability of the model and the accuracy of the fragility curves. The digital twin was used to perform a nonlinear incremental dynamic analysis (IDA) with selected ground motions that are consistent with the seismic fault and site characteristics. The fragility curves show that for the maximum expected acceleration (with a 2% probability of exceedance in 50 years) the structure has a 62% probability of undergoing extensive damage. This is the first study presenting fragility curves for civil infrastructure in the DR and the proposed methodology can be extended to other structures to support disaster mitigation and post-disaster decision-making strategies.

Application of Terrestrial LiDAR for Reconstructing 3D Images of Fault Trench Sites and Web-based Visualization Platform for Large Point Clouds (지상 라이다를 활용한 트렌치 단층 단면 3차원 영상 생성과 웹 기반 대용량 점군 자료 가시화 플랫폼 활용 사례)

  • Lee, Byung Woo;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.177-186
    • /
    • 2021
  • For disaster management and mitigation of earthquakes in Korea Peninsula, active fault investigation has been conducted for the past 5 years. In particular, investigation of sediment-covered active faults integrates geomorphological analysis on airborne LiDAR data, surface geological survey, and geophysical exploration, and unearths subsurface active faults by trench survey. However, the fault traces revealed by trench surveys are only available for investigation during a limited time and restored to the previous condition. Thus, the geological data describing the fault trench sites remain as the qualitative data in terms of research articles and reports. To extend the limitations due to temporal nature of geological studies, we utilized a terrestrial LiDAR to produce 3D point clouds for the fault trench sites and restored them in a digital space. The terrestrial LiDAR scanning was conducted at two trench sites located near the Yangsan Fault and acquired amplitude and reflectance from the surveyed area as well as color information by combining photogrammetry with the LiDAR system. The scanned data were merged to form the 3D point clouds having the average geometric error of 0.003 m, which exhibited the sufficient accuracy to restore the details of the surveyed trench sites. However, we found more post-processing on the scanned data would be necessary because the amplitudes and reflectances of the point clouds varied depending on the scan positions and the colors of the trench surfaces were captured differently depending on the light exposures available at the time. Such point clouds are pretty large in size and visualized through a limited set of softwares, which limits data sharing among researchers. As an alternative, we suggested Potree, an open-source web-based platform, to visualize the point clouds of the trench sites. In this study, as a result, we identified that terrestrial LiDAR data can be practical to increase reproducibility of geological field studies and easily accessible by researchers and students in Earth Sciences.

Piezoelectric friction dampers for earthquake mitigation of buildings: design, fabrication, and characterization

  • Chen, Genda;Garrett, Gabriel T.;Chen, Chaoqiang;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.539-556
    • /
    • 2004
  • In this paper, the design, fabrication and characterization of a piezoelectric friction damper are presented. It was sized with the proposed practical procedure to minimize the story drift and floor acceleration of an existing 1/4-scale, three-story frame structure under both near-fault and far-field earthquakes. The design operation friction force in kip was numerically determined to range from 2.2 to 3.3 times the value of the peak ground acceleration in g (gravitational acceleration). Experimental results indicated that the load-displacement loop of the damper is nearly rectangular in shape and independent of the excitation frequency. The coefficient of friction of the damper is approximately 0.85 when the clamping force on the damper is above 400 lbs. It was found that the friction force variation of the damper generated by piezoelectric actuators with 1000 Volts is approximately 90% of the expected value. The properties of the damper are insensitive to its ambient temperature and remain almost the same after being tested for more than 12,000 cycles.

Geotechnical Characteristics of Road Cut Slope in National highway 24 at Suknam pass, Eonyang-Milyang area (언양-밀양 간 국도24호선 석남고개 주변부 절토사면 지반특성)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Rhee, Jong-Hyun;Kim, Seung-Hee;Kim, Jin-Hwan;Son, Young-Jin
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.589-592
    • /
    • 2008
  • National Road No.24 connects Ulju-gun in Ulsan Metropolitan City and Milyang city in south Gyongsang Province. The width of the road is small and narrow and many of the dangerous cut slopes are distributed along the way. In 2002, the government officer carried on the brief exploration about road cut slopes, and KICT conduct a detailed additionally investigations 57 dangerous cut slope sites of them. We gained a variety of information of the each slope such as length, slope, discontinuites et al.

  • PDF

Optimum design of a sliding mode control for seismic mitigation of structures equipped with active tuned mass dampers

  • Eliasi, Hussein;Yazdani, Hessam;Khatibinia, Mohsen;Mahmoudi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.633-645
    • /
    • 2022
  • The active tuned mass damper (ATMD) is an efficient and reliable structural control system for mitigating the dynamic response of structures. The inertial force that an ATMD exerts on a structure to attenuate its otherwise large kinetic energy and undesirable vibrations and displacements is proportional to its excursion. Achieving a balance between the inertial force and excursion requires a control law or feedback mechanism. This study presents a technique for the optimum design of a sliding mode controller (SMC) as the control law for ATMD-equipped structures subjected to earthquakes. The technique includes optimizing an SMC under an artificial earthquake followed by testing its performance under real earthquakes. The SMC of a real 11-story shear building is optimized to demonstrate the technique, and its performance in mitigating the displacements of the building under benchmark near- and far-fault earthquakes is compared against that of a few other techniques (proportional-integral-derivative [PID], linear-quadratic regulator [LQR], and fuzzy logic control [FLC]). Results indicate that the optimum SMC outperforms PID and LQR and exhibits performance comparable to that of FLC in reducing displacements.

Technical Review on Risk Assessment Methodology for Carbon Marine Geological Storage Systems (이산화탄소 해양 지중저장 시스템에서의 누출 위해성 평가방법에 관한 기술적 검토)

  • Hwang, Jin-Hwan;Kang, Seong-Gil;Park, Young-Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.121-125
    • /
    • 2010
  • Carbon Capture and Storage (CCS) technology mitigates the emission amount of carbon dioxide into the atmosphere and can reduce green house effect which causes the climate change. Deep saline aquifer or obsolete oil/gas storage etc. in the marine geological structure are considered as the candidates for the storage. The injection and storage relating technology have been interested in the global society, however the adverse effect caused by leakage from the system failure. Even the safety level of the CCS is very high and there is almost no possibility to leak but, still the risk to marine ecosystem of the high concentrated carbon dioxide exposure is not verified. The present study introduces the system and environmental risk assessment methods. The feature, event and process approach can be a good starting point and we found the some possibility from the fault tree analysis for evaluation. From the FEP analysis, we drove the possible scenario which we need to concentrate on the construction and operation stages.