• 제목/요약/키워드: Fault displacement

검색결과 172건 처리시간 0.022초

Experimental and numerical investigation on flexural response of reinforced rubberized concrete beams using waste tire rubber

  • Memduh Karalar;Hakan Ozturk;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • 제48권1호
    • /
    • pp.43-57
    • /
    • 2023
  • The impacts of waste tire rubber (WTR) on the bending conduct of reinforced concrete beams (RCBs) are investigated in visualization of experimental tests and 3D finite element model (FEM) using both ANSYS and SAP2000. Several WTR rates are used in total 4 various full scale RCBs to observe the impact of WTR rate on the rupture and bending conduct of RCBs. For this purpose, the volumetric ratios (Vf) of WTR were chosen to change to 0%, 2.5%, 5% and 7.5% in the whole concrete. In relation to experimental test consequences, bending and rupture behaviors of the RCBs are observed. The best performance among the beams was observed in the beams with 2.5% WTR. Furthermore, as stated by test consequences, it is noticed that while WTR rate in the RCBs is improved, max. bending in the RCBs rises. For test consequences, it is clearly recognized as WTR rate in the RCB mixture is improved from 0% to 2.5%, deformation value in the RCB remarkably rises from 3.89 cm to 7.69 cm. This consequence is markedly recognized that WTR rates have a favorable result on deformation values in the RCBs. Furthermore, experimental tests are compared to 3D FEM consequences via using ANSYS software. In the ANSYS, special element types are formed and nonlinear multilinear misses plasticity material model and bilinear misses plasticity material model are chosen for concrete and compression and tension elements. As a consequence, it is noticed that each WTR rates in the RCBs mixture have dissimilar bending and rupture impacts on the RCBs. Then, to observe the impacts of WTR rate on the constructions under near-fault ground motions, a reinforced-concrete building was modelled via using SAP2000 software using 3-D model of the construction to complete nonlinear static analysis. Beam, column, steel haunch elements are modeled as nonlinear frame elements. Consequently, the seismic impacts of WTR rate on the lateral motions of each floor are obviously investigated particularly. Considering reduction in weight of structure and capacity of the members with using waste tire rubber, 2.5% of WTR resulted in the best performance while the construction is subjected to near fault earthquakes. Moreover, it is noticeably recognized that WTR rate has opposing influences on the seismic displacement behavior of the RC constructions.

터널 단면적 변화를 고려한 각부보강 영향성 평가 (A Case Study on the effects of Elephant Foot Method considering the rate of Changes in Tunnel Cross Section)

  • 이길용;오현문;조계환;오정호;김종주;김용성
    • 한국지반신소재학회논문집
    • /
    • 제17권1호
    • /
    • pp.111-118
    • /
    • 2018
  • 단층 등 취약지반 조건에서의 터널굴착 시 터널천단 및 측벽변위의 억제를 목적으로 하는 각부보강공이 일반적으로 적용되고 있으며, 터널 단면증가 변화율에 따른 각부보강공 설치각도 및 길이를 고려한 지보안전성 확인을 위한 주요 인자로서 내공변위 천단침하 각부침하 각부축력 등의 여러 응력변위 특성 변수들이 있다. 이러한 굴착중 안전성확인을 위한 변수들에 대한 검토 결과, 우각부 침하영향성이 단면증가율 보다 더 큰 변위경향을 보이는 가장 중요한 중점관리 지배요소로 분석되었으며, 터널단면 증가 변화율에 대한 각 보강공 길이별 축력의 변화관점에서는 큰 연관성을 보여주지 못하는 터널단면 증가율 대비 작은 증가율을 나타냈다. 또한, 각부 보강공 축력의 발생경향은 터널 단면증가율보다 보강공 마찰지지 개념 메커니즘에 따른 거동 영향성을 보여주는 것으로 분석되었다. 본 연구결과, 일정한 길이의 각부 보강공이 선정될 경우 지반불량 구간에서의 터널 단면이 다소 대단면화하여도 무리하게 각부보강공의 길이를 연장시키지 않는 것이 시공성 및 경제성을 고려한 보다 더 합리적인 방법으로 판단된다.

마그마관입에 의한 상부퇴적층의 변형에 관한연구 (A Study on the Structural Deformations in the Sedimentary Layer Resulted from Magma Intrusion)

  • 민경덕;김원영
    • 자원환경지질
    • /
    • 제10권1호
    • /
    • pp.37-48
    • /
    • 1977
  • The earth's crust is unceasingly undergoing deformations because of the forces acting upon it. The relationship between the tectonic forces and the resulting deformations are found from the states of stresses in the earth's crust induced by these forces. The study has been attempted to analyze the deformations of the overlying sedimentary layers, which are deformed by the magma intrusion along its lower boundary. The elastic model is constructed to analyze the geologic structures, by means of the theory of elasticity, and then the appropriate boundary conditions are given. The solution of the Airy stress function which satisfies the given boundary conditions is derived from the analytic method. The internal stress distributions of the deformed elastic model layer are portrayed by principal stress trajetories, and then the corresponding potential faults and joints systems are predicted from the Coulomb-Mohr failure criterion. The internal displacement distributions are shown by the calculated displacement components vectors, namely horizontal, vertical and net components. Results of the numerical calculations show the developments of some geologic structures as follows; (1) one set of shear joints and or two sets of shear joints which are oppisite directions, and one set of extension joints parallel to the ${\sigma}_1$ direction, (2) one set of high angle thrusts and normal faults, (3) symmetric fold; both limbs are dipping in opposite direction with low angle. The field work at the Wall-A San area, located near Jinju City, in southern Korea, had accomplished to compare the field structures with the predicted ones. The results of the comparison exhibits the developments of joint and fault systems satisfactorily consistent with each others. But the area does not show any type of folding, in spite of the intrusion of a granodiorite massif, this fact is one of the important features of the whole Kyungsang sedimentary basins of Mesozoic age distributed at the south-eastern parts of Korea. For this reason, it is thought that the magma intrusion had occurred with extremly low pressure. The geologic structures have been modified by the erosion and weathering throughout the geologic time, and the conditions of the sedimentary layers (width, thickness and radius of magma) are not the same as before, being intruded by the magma. To enlighten this, it is preferable to study these geologic structures with analyses of various types of rheological models.

  • PDF

Seismic structural demands and inelastic deformation ratios: Sensitivity analysis and simplified models

  • Chikh, Benazouz;Laouami, Nacer;Mebarki, Ahmed;Leblouba, Moussa;Mehani, Youcef;Kibboua, Abderrahmane;Hadid, Mohamed;Benouar, Djillali
    • Earthquakes and Structures
    • /
    • 제13권1호
    • /
    • pp.59-66
    • /
    • 2017
  • Modern seismic codes rely on performance-based seismic design methodology which requires that the structures withstand inelastic deformation. Many studies have focused on the inelastic deformation ratio evaluation (ratio between the inelastic and elastic maximum lateral displacement demands) for various inelastic spectra. This paper investigates the inelastic response spectra through the ductility demand ${\mu}$, the yield strength reduction factor $R_y$, and the inelastic deformation ratio. They depend on the vibration period T, the post-to-preyield stiffness ratio ${\alpha}$, the peak ground acceleration (PGA), and the normalized yield strength coefficient ${\eta}$ (ratio of yield strength coefficient divided by the PGA). A new inelastic deformation ratio $C_{\eta}$ is defined; it is related to the capacity curve (pushover curve) through the coefficient (${\eta}$) and the ratio (${\alpha}$) that are used as control parameters. A set of 140 real ground motions is selected. The structures are bilinear inelastic single degree of freedom systems (SDOF). The sensitivity of the resulting inelastic deformation ratio mean values is discussed for different levels of normalized yield strength coefficient. The influence of vibration period T, post-to-preyield stiffness ratio ${\alpha}$, normalized yield strength coefficient ${\eta}$, earthquake magnitude, ruptures distance (i.e., to fault rupture) and site conditions is also investigated. A regression analysis leads to simplified expressions of this inelastic deformation ratio. These simplified equations estimate the inelastic deformation ratio for structures, which is a key parameter for design or evaluation. The results show that, for a given level of normalized yield strength coefficient, these inelastic displacement ratios become non sensitive to none of the rupture distance, the earthquake magnitude or the site class. Furthermore, they show that the post-to-preyield stiffness has a negligible effect on the inelastic deformation ratio if the normalized yield strength coefficient is greater than unity.

Seismic Design of Structures in Low Seismicity Regions

  • 이동근;조소훈;고현
    • 한국지진공학회논문집
    • /
    • 제11권4호
    • /
    • pp.53-63
    • /
    • 2007
  • Seismic design codes are developed mainly based on the observation of the behavior of structures in the high seismicity regions where structures may experience significant amount of inelastic deformations and major earthquakes may result in structural damages in a vast area. Therefore, seismic loads are reduced in current design codes for building structures using response modification factors which depend on the ductility capacity and overstrength of a structural system. However, structures in low seismicity regions, subjected to a minor earthquake, will behave almost elastically because of the larger overstrength of structures in low seismicity regions such as Korea. Structures in low seismicity regions may have longer periods since they are designed to smaller seismic loads and main target of design will be minor or moderate earthquakes occurring nearby. Ground accelerations recorded at stations near the epicenter may have somewhat different response spectra from those of distant station records. Therefore, it is necessary to verify if the seismic design methods based on high seismicity would he applicable to low seismicity regions. In this study, the adequacy of design spectra, period estimation and response modification factors are discussed for the seismic design in low seismicity regions. The response modification factors are verified based on the ductility and overstrength of building structures estimated from the farce-displacement relationship. For the same response modification factor, the ductility demand in low seismicity regions may be smaller than that of high seismicity regions because the overstrength of structures may be larger in low seismicity regions. The ductility demands in example structures designed to UBC97 for high, moderate and low seismicity regions were compared. Demands of plastic rotation in connections were much lower in low seismicity regions compared to those of high seismicity regions when the structures are designed with the same response modification factor. Therefore, in low seismicity regions, it would be not required to use connection details with large ductility capacity even for structures designed with a large response modification factor.

파쇄대 암반에서 얕은 심도의 터널 굴착시 막장보강효과에 관한 연구 (The effects of the face reinforcement at shallow tunnels in fractured rock masses)

  • 남기천;허영;유광호
    • 한국터널지하공간학회 논문집
    • /
    • 제5권4호
    • /
    • pp.323-336
    • /
    • 2003
  • 최근 얕은 심도를 가지는 연약한 지반에서의 터널 굴착이 요구됨에 따라 터널보강공법의 변화가 필요하게 되었다. 본 연구에서는 불량한 지반을 대상으로 한 도심지 터널에서 일반적으로 무시되는 전방 코어의 변형을 제어할 수 있는 막장 수펑보강의 효율성을 평가함으로서 터널의 안정성 향상 방안을 제시하고자 한다. 즉, 막장전방의 체계적인 사전보강으로 막장자체의 안정성을 향상시키며, 부수적으로 최종 천단변위 및 지표침하와 같은 지반거동을 억제할 수 있다. 막장의 수평보강 방법을 적용한 3차원 수치해석을 이용하여 지반조건 및 보강 조건에 따른 터널 거동 변화를 산정할 수 있었다. 결과적으로, 막장 수평보강후 막장 압출변위는 크게 줄어들며, 막장전방에 대한 보강공법과 병행할 경우 그 효과가 증가되었다. 특히, 불량한 지반일 수록 막장보강에 의한 지반거동 억제효과가 크게 나타나게 된다.

  • PDF

Development of fragility curves for RC bridges subjected to reverse and strike-slip seismic sources

  • Mosleh, Araliya;Razzaghi, Mehran S.;Jara, Jose;Varum, Humberto
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.517-538
    • /
    • 2016
  • This paper presents a probabilistic fragility analysis for two groups of bridges: simply supported and integral bridges. Comparisons are based on the seismic fragility of the bridges subjected to accelerograms of two seismic sources. Three-dimensional finite-element models of the bridges were created for each set of bridge samples, considering the nonlinear behaviour of critical bridge components. When the seismic hazard in the site is controlled by a few seismic sources, it is important to quantify separately the contribution of each fault to the structure vulnerability. In this study, seismic records come from earthquakes that originated in strike-slip and reverse faulting mechanisms. The influence of the earthquake mechanism on the seismic vulnerability of the bridges was analysed by considering the displacement ductility of the piers. An in-depth parametric study was conducted to evaluate the sensitivity of the bridges' seismic responses to variations of structural parameters. The analysis showed that uncertainties related to the presence of lap splices in columns and superstructure type in terms of integral or simply supported spans should be considered in the fragility analysis of the bridge system. Finally, the fragility curves determine the conditional probabilities that a specific structural demand will reach or exceed the structural capacity by considering peak ground acceleration (PGA) and acceleration spectrum intensity (ASI). The results also show that the simply supported bridges perform consistently better from a seismic perspective than integral bridges and focal mechanism of the earthquakes plays an important role in the seismic fragility analysis of highway bridges.

MR 감쇠기와 FPS를 이용한 하이브리드 면진장치의 퍼지제어 (Fuzzy control of hybrid base-isolator with magnetorheological damper and friction pendulum system)

  • 김현수
    • 한국지진공학회논문집
    • /
    • 제9권1호통권41호
    • /
    • pp.61-70
    • /
    • 2005
  • 본 연구에서는 하이브리드 면진장치가 설치된 단자유도 구조물에 대하여 진동대 실험을 수행하였다. 본 연구에서 사용된 하이브리드 면진장치는 네 개의 FPS와 한 개의 MR 감쇠기로 구성하였다. 다양한 크기 및 특성을 가진 지진하중을 하이브리드 면진장치가 설치된 구조물에 가하여 진동제어 성능을 평가하였다. 본 연구에는 준능동 MR 감쇠기의 저항력을 효과적으로 조절하기 위하여 퍼지제어기를 사용하였고 구조물에 부착된 계측기를 통하여 변위 및 가속도를 피드백으로 이용한다. 수동 및 준능동 제어기법을 사용하여 얻은 구조물의 응답을 서로 비교하였고 그 결과 FPS와 MR 감쇠기의 조합으로 다양한 특성의 하중을 받는 구조물의 진동제어를 효과적으로 수행할 수 있음을 알 수 있다.

영광(靈光) 부근(附近) 연성전단대(延性剪斷帶)(전주전단대(全州剪斷帶))의 성질(性質)과 교차양상(交叉樣相)에 관(關)하여 (On the Properties and Intersection Feature of the Ductile Shear Zone (Chonju shear zone) near Yongkwang-Eub)

  • 전경석;장태우;이병주
    • 자원환경지질
    • /
    • 제24권4호
    • /
    • pp.435-446
    • /
    • 1991
  • Ductile shear zones developed in Jurassic granites in the Yonggwang area show NE trend at the eastern part and nearly EW trend at the western part, respectively. Judged from shear sense indicators, they have resulted from dextral strike-slip movement. The intersection of both trends is thought to be due to the truncation and offset of NE shear zone Chonju Shear zone by the brittle Yonggwang fault which runs in near EW direction with sinistral movement sense. The simple shear deformation was predominate through the deformation in this ductile shear zone. Based on this deformation mechanism, the shear strain (${\gamma}$) estimated in domain 1 increases from 0.14 at the shear zone margin to 9.41 toward the center of shear zone. Total displacement obtained only from this measured section(JK 59 to JK14) appecars to be 1434.5 meters. The sequential development of microstructures can be divided into three stages; weakly-foliated, well-foliated and banded-foliated stages. In the weakly-foliated stage dislocation glide mechanism might be predominant. In the well-foliated stage grain boundary migration and progressive misorientation of subgrains was remarkable during dynamic recovery and recrystallization. In the banded-foliated stage grain boundary sliding and microfracturing mechanisms accompanied with crushing and cracking were marked. According to strain analysis from quartzites of the metasedimentary rocks, strain intensity (${\gamma}$) of the samples within the ductile shear zone ranges from 2.7 to 5.7, while that of the samples out of the ductile shear zone appears to be about 1.7.

  • PDF

PSC-Box 교량에 적용된 탄성고무 받침과 납-고무 받침의 노후화 효과를 고려한 지진응답의 평가 (Evaluation of Seismic Response Considering the Ageing Effect of Rubber and Lead-Rubber Bearings Applied to PSC Box Bridge)

  • 정연희;송종걸;신수봉
    • 한국지진공학회논문집
    • /
    • 제23권6호
    • /
    • pp.311-319
    • /
    • 2019
  • The number of aged bridges is increasing so that bridges over 30 years old account for about 11% of all bridges. Consequently, the development of a seismic performance evaluation method that considers the effects of ageing is essential for a seismic retrofitting process for improvement of the seismic safety of existing old bridges. Assessment of the damage situation of bridges after the recent earthquakes in Korea has been limited to the bearings, anchor, and concrete mortar on piers. The purpose of this study is to evaluate the seismic responses of PSC box girder bridges by considering the ageing effect of rubber bearings (RBs) and lead-rubber bearings (LRBs). The modification factor proposed by AASHTO is used to take into account the ageing effect in the bearings. PSC box girder bridges with RBs and LRBs were 3D modeled and analyzed with the OpenSEES program. In order to evaluate the ageing effect of RBs and LRBs, 40 near fault and 40 far field records were used as the input earthquakes. When considering the effect of ageing, the displacement responses and shear forces of bridge bearings (RBs and LRBs) were found to increase mostly under the analytical conditions. It was shown that the effect of ageing is greater in the case of RBs than in the case of LRBs.