• Title/Summary/Keyword: Fault diagnostics

Search Result 72, Processing Time 0.031 seconds

Overview of AI-based Fault Detection and Diagnostics (인공지능 기반 고장진단 관련 동향 분석)

  • Park, EunSoo;Kim, Seon Dae;Jeong, Jong Beom;Ryu, Eun-Seok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.235-237
    • /
    • 2018
  • 많은 분야에서 기기설비들의 고장, 결함은 안전과 관련되어 있기 때문에 연구가 활발히 진행되고 있다. 주로 데이터를 취득하여 제품의 유지보수 및 품질을 향상시키는 연구로 고장을 나타내는 특성 인자를 추출하여 고장진단을 하는 것이다. 하지만, 과거의 룰 기반 결함 탐지 기법은 예외의 경우를 탐지하기 어렵다는 문제를 가져왔다. 최근 들어 인공지능이 특성 인자를 쉽게 추출할 수 있다는 장점으로 인해 인공지능과 결합된 고장진단 시스템이 많이 제안되고 있다. 본 논문에서는 인공지능의 추세와 인공지능과 결합된 고장진단 시스템을 소개한다.

  • PDF

A Study on Intelligent Performance Diagnostics of a Gas Turbine Engine Using Neural Networks (신경회로망을 이용한 가스터빈 엔진의 지능형 성능진단에 관한 연구)

  • Kong, Chang-Duk;Kho, Seong-Hee;Ki, Ja-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.51-57
    • /
    • 2004
  • An intelligent performance diagnostic computer program of a gas turbine using the NN(Neural Network) was developed. Recently on-condition performance monitoring of major gas path components using the GPA(Gas Path Analysis) method has been performed in analyzing of engine faults. However because the types and severities of engine faults are various and complex, it is not easy that all fault conditions of the engine would be monitored only by the GPA approach Therefore in order to solve this problem, application of using the NNs for learning and diagnosis would be required. Among then, a BPN (Back Propagation Neural Network) with one hidden layer, which can use an updating learning rate, was proposed for diagnostics of PT6A-62 turboprop engine in this work.

A Study on Performance Diagnostic of Smart UAV Gas Turbine Engine using Neural Network (신경회로망을 이용한 스마트 무인기용 가스터빈 엔진의 성능진단에 관한 연구)

  • Kong Chang-Duk;Ki Ja-Young;Lee Chang-Ho;Lee Seoung-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.213-217
    • /
    • 2006
  • An intelligent performance diagnostic program using the Neural Network was proposed for PW206C turboshaft engine. It was selected as a power plant for the tilt rotor type Smart UAV (Unmanned Aerial Vehicle) which has been developed by KARI (Korea Aerospace Research Institute). For teaming the NN, a BPN with one hidden, one input and one output layer was used. The input layer had seven neurons of variations of measurement parameters such as SHP, MF, P2, T2, P4, T4 and T5, and the output layer used 6 neurons of degradation ratios of flow capacities and efficiencies for compressor, compressor turbine and power turbine. Database for network teaming and test was constructed using a gas turbine performance simulation program. From application results for diagnostics of the PW206C turboshaft engine using the learned networks, it was confirmed that the proposed diagnostics algorithm could detect well the single fault types such as compressor fouling and compressor turbine erosion.

  • PDF

A Study on Performance Diagnostic of Smart UAV Gas Turbine Engine using Neural Network (신경회로망을 이용한 스마트 무인기용 가스터빈 엔진의 성능진단에 관한 연구)

  • Kong Chang-Duk;Ki Ja-Young;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.15-22
    • /
    • 2006
  • An intelligent performance diagnostic program using the Neural Network was proposed for PW206C turboshaft engine. It was selected as a power plant for the tilt rotor type Smart UAV(Unmanned Aerial Vehicle) which is being developed by KARI (Korea Aerospace Research Institute). For teeming the NN(Neural Network), a BPN(Back Propagation Network) with one hidden, one input and one output layer was used. The input layer has seven neurons: variations of measurement parameters such as SHP, MF, P2, T2, P4, T4 and T5, and the output layer uses 6 neurons: degradation ratios of flow capacities and efficiencies for compressor, compressor turbine and power turbine, respectively, Database for network teaming and test was constructed using a gas turbine performance simulation program. From application of the learned networks to diagnostics of the PW206C turboshaft engine, it was confirmed that the proposed diagnostics algorithm could detect well the single fault types such as compressor fouling and compressor turbine erosion.

Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed (회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교)

  • Moon, Ki-Yeong;Kim, Hyung-Jin;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • This study examined the diagnostics of abnormalities and faults of equipment, whose rotational speed changes even during regular operation. The purpose of this study was to suggest a procedure that can properly apply machine learning to the time series data, comprising non-stationary characteristics as the rotational speed changes. Anomaly and fault diagnosis was performed using machine learning: k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Random Forest. To compare the diagnostic accuracy, an autoencoder was used for anomaly detection and a convolution based Conv1D was additionally used for fault diagnosis. Feature vectors comprising statistical and frequency attributes were extracted, and normalization & dimensional reduction were applied to the extracted feature vectors. Changes in the diagnostic accuracy of machine learning according to feature selection, normalization, and dimensional reduction are explained. The hyperparameter optimization process and the layered structure are also described for each algorithm. Finally, results show that machine learning can accurately diagnose the failure of a variable-rotation machine under the appropriate feature treatment, although the convolution algorithms have been widely applied to the considered problem.

Development of Smart Cargo Level Sensors Including Diagnostics Function for Liquid Cargo Ships (액체운반용 선박을 위한 진단기능을 가지는 스마트 카고 센서 개발)

  • Bae, Hyeon;Kim, Youn-Tai;Park, Dae-Hoon;Kim, Sung-Shin;Choi, Moon-Ho;Jang, Yong-Suk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.341-346
    • /
    • 2008
  • This paper is to develop a monitoring system with diagnosis for smart cargo sensors that is for management and maintenance of the liquid cargo ships. The main goal of the system is to achieve the total automation system of the cargo sensor. By this study, the active smart sensor for the liquid cargo ships is designed and developed that guarantees high-confidence, stability, and durability. The proposed system consists of a monitoring part of the steam pressure, high-level monitoring, over flowing monitoring, gas monitoring, and tank temperature monitoring. The signals transferred from each unit system are used for sensor diagnosis based on confidence and accuracy. Finally, in this study, the total supervisory monitoring system is developed to maintain and manage the cargo effectively based on fault diagnosis and prognosis of the each sensor system.

Development of Diagnostic Algorithm and Expert System to diagnose Power Transformers by the methods of Gas Analysis (가스분석기법을 이용한 전력용 변압기 내부 이상진단을 위한 진단 알고리즘 및 전문가시스템 개발)

  • 최인혁;정길조;권동진;신명철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.5
    • /
    • pp.68-74
    • /
    • 2001
  • This paper describes the new algorithm method for detecting abnormal causes within power transformers. Generally, the gas analysis has been proved the most confident method of many transformer diagnostics. The proposed algorithm is adapted to the international codes of IEC, Dornenburg, Gas Pattern including the DEPCO´s gas analysis method for the improvement of diagnostic efficiency. Specially, this algorithm is programmed by the tool of Element Expert developed Neuron DATA Inc. in USA. Also, it was confirmed that the developed algorithm is proved the confidence by the use of real data in fault power transformers.

  • PDF

Diagnostics and Prognostics Based on Adaptive Time-Frequency Feature Discrimination

  • Oh, Jae-Hyuk;Kim, Chang-Gu;Cho, Young-Man
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1537-1548
    • /
    • 2004
  • This paper presents a novel diagnostic technique for monitoring the system conditions and detecting failure modes and precursors based on wavelet-packet analysis of external noise/vibration measurements. The capability is based on extracting relevant features of noise/vibration data that best discriminate systems with different noise/vibration signatures by analyzing external measurements of noise/vibration in the time-frequency domain. By virtue of their localized nature both in time and frequency, the identified features help to reveal faults at the level of components in a mechanical system in addition to the existence of certain faults. A prima-facie case is made via application of the proposed approach to fault detection in scroll and rotary compressors, although the methods and algorithms are very general in nature. The proposed technique has successfully identified the existence of specific faults in the scroll and rotary compressors. In addition, its capability of tracking the severity of specific faults in the rotary compressors indicates that the technique has a potential to be used as a prognostic tool.

Robust Parameter Design via Taguchi's Approach and Neural Network

  • Tsai, Jeh-Hsin;Lu, Iuan-Yuan
    • International Journal of Quality Innovation
    • /
    • v.6 no.1
    • /
    • pp.109-118
    • /
    • 2005
  • The parameter design is the most emphasized measure by researchers for a new products development. It is critical for makers to achieve simultaneously in both the time-to-market production and the quality enhancement. However, there are difficulties in practical application, such as (1) complexity and nonlinear relationships co-existed among the system's inputs, outputs and control parameters, (2) interactions occurred among parameters, (3) where the adjustment factors of Taguchi's two-phase optimization procedure cannot be sure to exist in practice, and (4) for some reasons, the data became lost or were never available. For these incomplete data, the Taguchi methods cannot treat them well. Neural networks have a learning capability of fault tolerance and model free characteristics. These characteristics support the neural networks as a competitive tool in processing multivariable input-output implementation. The successful fields include diagnostics, robotics, scheduling, decision-making, prediction, etc. This research is a case study of spherical annealing model. In the beginning, an original model is used to pre-fix a model of parameter design. Then neural networks are introduced to achieve another model. Study results showed both of them could perform the highest spherical level of quality.

Development of On-line Performance Diagnostic Program of a Helicopter Turboshaft Engine

  • Kong, Chang-Duk;Koo, Young-Ju;Kho, Seong-Hee;Ryu, Hye-Ok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.34-42
    • /
    • 2009
  • Gas turbine performance diagnostics is a method for detecting, isolating and quantifying faults in gas turbine gas path components. On-line precise fault diagnosis can promote greatly reliability and availability of gas turbine in real time operation. This work proposes a GUI-type on-line diagnostic program using SIMULINK and Fuzzy-Neuro algorithms for a helicopter turboshaft engine. During development of the diagnostic program, a look-up table type base performance module are used for reducing computer calculating time and a signal generation module for simulating real time performance data. This program is composed of the on-line condition monitoring program to monitor on-line measuring performance condition, the fuzzy inference system to isolate the faults from measuring data and the neural network to quantify the isolated faults. Evaluation of the proposed on-line diagnostic program is performed through application to the helicopter engine health monitoring.