• Title/Summary/Keyword: Fault current ratio

Search Result 131, Processing Time 0.024 seconds

Analysis on Current Limiting Characteristics of the SFCL with Magnetically Coupled Two Coils and YBCO Coated Conductor Due to the Winding Direction and the Turn Number' Ratio Between Two Coils (직렬 연결된 두 코일과 YBCO Coated Conductor로 구성된 초전도 전류제한기의 권선방향과 권선 비에 따른 전류제한 특성 분석)

  • Lee, Dong-Hyeok;Du, Ho-Ik;Kim, Yong-Jin;Han, Byoung-Sung;Han, Sang-Chul;Lee, Jeong-Phil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.52-56
    • /
    • 2011
  • The ongoing Superconducting Fault Current Limiter(SFCL) development mainly has focused on the application of commercializaton and power system through combining with normal-conducting device, moving away from current-limiting method, which is solely dependant on the existing superconductor. Compared to the structural development above, on the other hand, the research on applying superconducting current-limiting element to SFCL, the heart of SFCL, still has a lot left to do, apart form traditional resistive type SFCL. In this study, we looked into the current limiting characteristic of SFCL using core and coil. YBCO coated conductor with stainless steel stabilizer layer was verified by the excellent of current-limiting element of the resistive type SFCL that has a high Jc and index as well as being superior in mechanical property. Also, we study temperature characteristics and resistance characteristics, max voltage, response time and current-limiting ability that can be an indicator as current-limiting element while applying to superconducting current-limiting element caused by variation of winding direction, winding ratio of SFCL using core and coil.

Development of Fault Detection Method for a Transformer Using Neural Network (신경회로망을 이용한 변압기 사고 검출 기법 개발)

  • 김일남;김남호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.43-50
    • /
    • 2003
  • This presents a fault detecting method for a power transformer based upon a neural network. To maintain a normal relay operating conditions, external winding faults of a power transformer and magnetic inrush have been tested under consideration of the EMTP/ATP software and internal faults of power transformer have been tested by the EMTP/BCTRAN software. The neural network has been evaluated by the proposed fault. Input variables of the neural network for the proposed model can be obtained from fundamental currents, restraining and operating currents. This algorithm uses back-propagation and the ratio of a restraining current and an operating current as relay input parameters. The ratio may enhance the fault detection since the restraining currents increase rapidly at external faults. The proposed detecting method has been applied to the practical relay systems for transformer protection. As a result, the proposed detecting method based on the neural network has been shown to have better characteristics.

A Design Method of Iron-cored CTs To Prevent Satruation (포화를 방지하기 위한 보호용 철심 변류기 설계 방법)

  • Lee, Ju-Hun;Gang, Sang-Hui;Gang, Yong-Cheol;Lee, Seung-Jae;Bae, Ju-Cheon;An, Jun-Gi;Lee, Cheong-Hak;Lee, Jeong-Taek
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.119-126
    • /
    • 1999
  • Current transformer (CT) saturation may cause a variety of protective relays to malfunction. The conventional CT is designed that it can carry up to 20 times the rated current without exceeding 10% ratio error. However, the possibility of CT saturation still remains if the fault current contains substantial amounts of ac and/or dc components. This paper presents a design method of iron-cored CTs for use with protective relays to prevent CT saturation. The proposed design method determines the core cross section of the CT; it employs the transient dimensioning factor to consider relay's operating time (duty cycle) and dc component as well as ac components contained in the fault current, and symmetrical short-circuit current factor to consider as well as ac components contained in the fault current, and symmetrical short-circuit current factor to consider the biggest fault current. The method designs the cross section of CTs in cases of reclosure and no reclosure.

  • PDF

Characteristics of Transformer-Type SFCL according to the Connecting Methods of Secondary Coils (2차 권선의 연결방법에 따른 변압기형 초전도 한류기의 특성)

  • Cho, Yong-Sun;Park, Hyoung-Min;Chung, Soo-Bok;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2078-2083
    • /
    • 2007
  • We have analyzed operating characteristics of transformer-type superconducting fault current limiter (SFCL) according to the serial or parallel connections of secondary coils with $YBa_2Cu_3O_7$ (YBCO) thin films. The turn ratio between the primary and secondary coils was 63:21. Transformer-type SFCL using a transformer with secondary winding of serial or parallel coils could reduce the unbalanced quench caused by differences of the critical current density between YBCO thin films. We found that transformer-type SFCL having serial or parallel connections induced simultaneous quench between the superconducting units. The limiting current in the transformer-type SFCL with a parallel connection was lowered to 30 % compared to the SFCL with a serial connection. In the meantime, when the currents generated in the superconducting units were similar, the voltage value in the parallel connection was 60 % as low as that in the serial connection. However, the voltage generated in the primary winding was some higher. In conclusion, we found that transformer-type SFCL with parallel connection of secondary coils was more effective in fault current limiting characteristics and in the reduction of the consumption power for superconducting units compared to those of the transformer-type SFCL with serial connection of secondary coils.

Nonlinear response of r.c. framed buildings retrofitted by different base-isolation systems under horizontal and vertical components of near-fault earthquakes

  • Mazza, Fabio;Mazza, Mirko;Vulcano, Alfonso
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.135-144
    • /
    • 2017
  • Near-fault ground motions are characterized by high values of the ratio between the peak of vertical and horizontal ground accelerations, which can significantly affect the nonlinear response of a base-isolated structure. To check the effectiveness of different base-isolation systems for retrofitting a r.c. framed structure located in a near-fault area, a numerical investigation is carried out analyzing the nonlinear dynamic response of the fixed-base and isolated structures. For this purpose, a six-storey r.c. framed building is supposed to be retrofitted by insertion of an isolation system at the base for attaining performance levels imposed by current Italian code in a high-risk seismic zone. In particular, elastomeric (e.g., high-damping-laminated-rubber bearings, HDLRBs) and friction (e.g., steel-PTFE sliding bearings, SBs, or friction pendulum bearings, FPBs) isolators are considered, with reference to three cases of base isolation: HDLRBs acting alone (i.e., EBI structures); in-parallel combination of HDLRBs and SBs (i.e., EFBI structures); FPBs acting alone (i.e., FPBI structures). Different values of the stiffness ratio, defined as the ratio between the vertical and horizontal stiffnesses of the HDLRBs, sliding ratio, defined as the global sliding force divided by the maximum sliding force of the SBs, and in-plan distribution of friction coefficient for the FPs are investigated. The EBI, EFBI and FPBI base-isolation systems are designed assuming the same values of the fundamental vibration period and equivalent viscous damping ratio. The nonlinear dynamic analysis is carried out with reference to near-fault earthquakes, selected and scaled on the design hypotheses adopted for the test structures.

Current Limiting and Recovery Characteristics of Two Magnetically Coupled Type SFCL with Two Coils Connected in Parallel Using Dual Iron Cores (이중철심을 이용한 병렬연결된 자기결합형 초전도한류기의 전류제한 및 회복특성)

  • Ko, Seok-Cheol;Lim, Sung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.717-722
    • /
    • 2016
  • In this paper, in order to support the peak current limiting function depending on the intensity of the fault current at the early stage of failure, a two magnetically coupled type superconducting fault current limiter (SFCL) is proposed, which includes high-Tc superconducting (HTSC) element 1, where the existing primary and secondary coils are connected to one iron core in parallel, and HTSC element 2, which is connected to the tertiary winding using an additional iron core. The results of the experiments in this study confirmed that the two magnetic coupling type SFCL having coil 1 and coil 2 connected in parallel using dual iron cores is capable of having only HTSC element 1 support the burden of the peak current when a failure occurs. The reason for this is that although HTSC element 1 was quenched and malfunctioned because the instantaneous factor of the initial fault current was large, the current flowing to coil 3 did not exceed the critical current, which would otherwise cause HTSC element 2 to be quenched and not function. In order to limit the peak current upon fault through the sequential HTSC elements, the design should allow it to have the same value as the low value of coil 1 while having coil 3 possess a higher self-inductance value than coil 2. In addition, a short-circuit simulation experiment was conducted to examine and validate the current limiting and recovery characteristics of the SFCL when the winding ratio between coil 1 and coil 2 was 0.25. Through the analysis of the short-circuit tests, the current limiting and recovery characteristics in the case of the additive polarity winding was confirmed to be superior to that of the subtractive polarity winding.

A Protection Algorithm Discriminating Between Internal and External Faults for Wind Farms (풍력발전단지 보호를 위한 내외부 고장 판별 알고리즘)

  • Kwon, Young-Jin;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.854-859
    • /
    • 2007
  • A wind farm consists of many wind generator(WG)s therefore, it is generally a complex power system. A wind farm as a distributed generation(DG) affects utility power system. If a conventional protection schemes are applied, it is difficult to detect faults correctly and the schemes can't provide proper coordination in some cases. This paper presents a protection algorithm for a wind farm which consists of a looped collection circuit. Because the proposed algorithm can distinguish between an internal fault and an external fault in a wind farm, The proposed algorithm can disconnect the faulted section in a wind farm. This algorithm is based on an overcurrent protection technique with the change of the ratio of the output current of a generator to the current of the looped line connected to each generator to collect the each generator's power. In addition, operating time of the algorithm is shortened by using the voltage drop at a generator collection point. The performance of the proposed algorithm was verified under various fault conditions using PSCAD/EMTDC simulations.

Fragility assessment of buckling-restrained braced frames under near-field earthquakes

  • Ghowsi, Ahmad F.;Sahoo, Dipti R.
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.173-190
    • /
    • 2015
  • This study presents an analytical investigation on the seismic response of a medium-rise buckling-restrained braced frame (BRBF) under the near-fault ground motions. A seven-story BRBF is designed as per the current code provisions for five different combinations of brace configurations and beam-column connections. Two types of brace configurations (i.e., Chevron and Double-X) are considered along with a combination of the moment-resisting and the non-moment-resisting beam-to-column connections for the study frame. Nonlinear dynamic analyses are carried out for all study frames for an ensemble of forty SAC near-fault ground motions. The main parameters evaluated are the interstory and residual drift response, brace displacement ductility, and plastic hinge mechanisms. Fragility curves are developed using log-normal probability density functions for all study frames considering the interstory drift ratio and residual drift ratio as the damage parameters. The average interstory drift response of BRBFs with Double-X brace configurations significantly exceeded the allowable drift limit of 2%. The maximum displacement ductility characteristics of BRBs is efficiently utilized under the seismic loading if these braces are arranged in the Double-X configurations instead of Chevron configurations in BRBFs located in the near-fault regions. However, BRBFs with the Double-X brace configurations exhibit the higher interstory drift and residual drift response under near-fault ground motions due to the formation of plastic hinges in the columns and beams at the intermediate story levels.

Current Limiting Characteristics of Improved Flux-Lock Type SFCL According to Winding Direction of Coil 2 and Variable Number of Coil 1 and Coil 2 (개선된 자속구속형의 2차 측 권선 방향과 1차 권선수와 2차 권선수의 변화에 따른 사고전류제한 특성)

  • Kim, Yong-Jin;Du, Ho-Ik;Lee, Dong-Hyeok;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.714-717
    • /
    • 2010
  • The improved flux-lock type superconducting fault current limiter (SFCL) is composed of a series transformer and superconducting unit of the yttrium-barium-copper-oxide (YBCO) coated conductor. In this paper, we investigated current limiting characteristics through winding direction of coil 2 and variable number of coil 1 and coil 2 in improved flux-lock type SFCL. The better fault current characteristics and the burden of YBCO coated conductor can be confirmed from the experimental result in the higher turn ratio of coil 1 and coil 2 in the additive conditions. In case of subtractive condition, we can confirm a similar result in the same case of experimental conditions. but the burden of YBCO coated conductor has been increased from an increase in winding numbers of coil 2.

Operational Characteristics of SFCL using Magnetic Coupling of Coils (코일의 자기결합을 이용한 초전도 사고전류제한기의 동작특성)

  • Lim, Sung-Hun;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.68-70
    • /
    • 2007
  • The operational characteristics of superconducting fault current limiter (SFCL) using magnetic coupling of coils were investigated. This SFCL consists of a high-Tc superconducting (HTSC) element and two coils with series or parallel connection on the same iron. This SFCL has the merit that the operational current of SFCL can be increased higher than the critical current of the superconducting element by adjusting the inductance ratio between two coils. To confirm its operation, the circuit for the fault simulation was constructed. From the measured voltage and current of the SFCL, it was confirmed that the resistance of HTSC element comprising this SFCL increased more than that of HTSC element's independent operation.

  • PDF