• Title/Summary/Keyword: Fault current ratio

Search Result 131, Processing Time 0.032 seconds

DGA Interpretation of Oil Filled Transformer Condition Diagnosis

  • Alghamdi, Ali Saeed;Muhamad, Nor Asiah;Suleiman, Abubakar A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.229-232
    • /
    • 2012
  • DGA is one of the most recent techniques developed to diagnose the fault condition on oil filled insulation transformers. There are more than 6 known different methods of DGA fault interpretation technique and so there is the likelihood that they may vary in their interpretations. A series of combined interpretation methods that can determine the power transformer condition faults in one assessment is therefore needed. This paper presents a computer program- based system developed to combine four DGA assessment techniques; Rogers Ratio Method, IEC Basic Ratio Method, Duval Triangle method and Key Gas Method. An easy to use Graphic User Interface was designed to give a visual display of the four techniques. The result shows that this assessment method can increase the accuracy of DGA methods by up to 20% and the no prediction result had been reduced down to 0%.

The Fault Current Limiting Characteristics According to Increase of Voltage in a Flux-Lock Type High-Tc Superconducting Fault Current Limiter (전압 증가에 따른 자속구속형 고온 초전도 전류제한기의 사고전류 제한 특성)

  • Cho, Yong-Sun;Park, Hyoung-Min;Lim, Sung-Hun;Park, Chung-Ryul;Han, Byoung-Sung;Choi, Hyo-Sang;Hyun, Ok-Bae;Hwang, Jong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2004.11d
    • /
    • pp.93-96
    • /
    • 2004
  • In this paper, we analyzed the current limiting characteristics according to increase of source voltage in the flux-lock type high-Tc superconducting fault current limiter (SFCL). The flux-lock type SFCL consisted of two coils, which were wound in parallel each other through an iron core, and high-Tc superconducting (HTSC) element connected with coil 2 in series. The flux-lock type SFCL has the characteristics better in comparison with the resistive type SFCL because the fault current in the flux-lock type SFCL can be divided into two coils by the inductance ratio of coil 1 and coil 2. The fault current limiting operation of the flux-lock type SFCL can be different due to winding direction of the two coils. The winding method where the decrease of linkage flux between two coils in the accident happens is called the subtractive polarity winding and the winding method in case of the increase of linkage flux is called the additive polarity winding. The fault current limiting experiments according to the source voltage were performed for these two winding methods. Through the comparison and the analysis of the experimental data, we confirmed that the quench time was shorter, irrespective of the winding direction as the source voltage increased and that the fault current and the HTSC's resistance increased as the amplitude of the source voltage increased. The additive polarity winding made the fast quench time and the lower resistance of HTSC element in comparison with the subtractive polarity winding. The fault current of the subtractive polarity winding was larger than that of the additive polarity winding. In conclusion, we found that the additive polarity winding reduced the burden of SFCL because the quench time was shorter and the fault current was smaller than those of the subtractive polarity winding.

  • PDF

Fault Current Limiting and Recovery Characteristics's Modeling of SFCL Using Magnetically Coupled Two Coils (자기결합을 이용한 초전도 사고전류 제한기의 사고전류제한 및 회복 특성 모델링)

  • Kim, Jin-Seok;Ahn, Jae-Min;Moon, Jong-Fil;Lim, Sung-Hun;Kim, Jae-Chul;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.180-181
    • /
    • 2007
  • In this paper, SFCL using two magnetically coupled coils was modeled and simulated by PSCAD/EMTDC. The simulation was shown that fault current could be adjusted with the inductance ratio and the winding direction of two coils. The limited fault current in case of the additive polarity winding was lower than that of the subtractive polarity. The analysis results were compared with the calculated ones, and both the results agreed.

  • PDF

Operational Characteristics of DC Reactor Type SFCL for Accident of Both Power Source Side and Load Side (전원단 및 부하단 사고에 따른 DC 리액터형 고온초전도 전류제한기 동작특성)

  • Lee, Su-Won;Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.140-145
    • /
    • 2004
  • In this paper, we analyzed the operational characteristics of the modified DC reactor type SFCL and derived the design condition of superconducting coil to be operated properly as power source as well as fault current limiter. It was confirmed through the simulation for the operation of this SFCL that the modified DC reactor type SFCL could be operated as both the uninterruptible power supply and the fault current limiter by controlling the duty ratio of GTO thyristor bridge.

Analysis of Quench Characteristics according to increment of turn number of a reactor and shunt resistors of the Matrix-type Superconductor Fault Current Limiter (매트릭스형 초전도 전류제한기의 리액터의 턴수 및 션트저항 증가에 따른 퀜치특성 분석)

  • Lee, Ju-Hyoung;Oh, Geun-Gon;Jung, Su-Bok;Park, Hyoung-Min;Cho, Young-Sun;Jung, Byoung-Ik;Choi, Hyo-Sang
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.332-334
    • /
    • 2008
  • The matrix-type superconducting fault current limiter (SFCL) using YBCO thin film consists of the trigger and current-limiting parts. We fabricated the matrix-type SFCL with the integrated current limiting modules. we carried out the experiment of matrix-type SFCL with the integrated current limiting modules connected in series or parallel. We saw current characteristics due to ratio of change the shunt resistance and turns. We confirmed that the difference of critical current between superconducting units was decreased by increment of current flowing into the reactor which applied the magnetic field into the superconducting units..

  • PDF

Electric Power Characteristics of a SFCL based on Turn-ratio of 3-Phase Transformer (3상 변압기의 권수비에 따른 초전도 한류기의 전력특성)

  • Jeong, In-Sung;Choi, Hyo-Sang;Jung, Byung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.414-417
    • /
    • 2014
  • At present, the demand for electric power increases, the electric power system is complicated. The size of the line-to-ground fault and the line-to-line fault occurred with complication of electric power system continue to increase, therefore several issues are raised. To address these issues effectively, the superconducting fault current limiter (SFCL) has been proposed, this study is ongoing. In this paper, we applied the SFCL in three-phase transformer and comparative analysis of the electric power burden to the SFCL. The superconductor is combined to the third winding of transformers in connection structure. In case of a third line-to-line fault, we did comparative analysis of the electric power burden to the SFCL based on the turn ratio of transformer third winding. In this case, we could confirm as the third turn ratio increased, electric power impressed to the superconducting element increased.

Detection of Stator Winding Inter-Turn Short Circuit Faults in Permanent Magnet Synchronous Motors and Automatic Classification of Fault Severity via a Pattern Recognition System

  • CIRA, Ferhat;ARKAN, Muslum;GUMUS, Bilal
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.416-424
    • /
    • 2016
  • In this study, automatic detection of stator winding inter-turn short circuit fault (SWISCFs) in surface-mounted permanent magnet synchronous motors (SPMSMs) and automatic classification of fault severity via a pattern recognition system (PRS) are presented. In the case of a stator short circuit fault, performance losses become an important issue for SPMSMs. To detect stator winding short circuit faults automatically and to estimate the severity of the fault, an artificial neural network (ANN)-based PRS was used. It was found that the amplitude of the third harmonic of the current was the most distinctive characteristic for detecting the short circuit fault ratio of the SPMSM. To validate the proposed method, both simulation results and experimental results are presented.

Distance relay using the current transformer compensating algorithm (변류기 보상 알고리즘을 적용한 거리계전기)

  • Kang, Yong-Cheol;Lee, Hyun-Woong;Jang, Sung-Il;Kim, Yong-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.501-502
    • /
    • 2007
  • This paper describes a distance relay that operates in conjunction with a current transformer (CT) compensation algorithm. A distance relay detects a fault based on the ratio of the voltage to the current. If a CT saturates, the calculated impedance becomes larger. This causes maloperation or operating time delay of the distance relay. A compensating algorithm estimates the correct secondary current from the severely distorted currents even when the measurement CTs are used. The correct current is estimated by adding the calculated magnetizing current to the measured secondary current. Test results show that the proposed distance relay can detect a fault without the operating time delay even when the secondary currents are extremely distorted because of use of measurement CTs.

  • PDF

Analysis of Quench Generation in Fault Types According to Inductance Variation in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting (삼상일체화된 자속구속형 고온초전도 전류제한기의 인덕턴스 변화에 따른 사고유형별 퀜치발생 분석)

  • Park, Chung-Ryul;Lim, Sung-Hun;Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.165-166
    • /
    • 2005
  • In this paper, we investigated the quench generation of HTSC elements in fault types according to inductance variation in the integrated three-phase flux-lock type SFCL. The integrated three-phase flux-lock type SFCL was the upgrade version of the single-phase flux-lock type SFCL. The structure of the integrated three-phase flux-lock type SFCL consisted of three-phase flux-lock reactor wound on an iron core with the ratio of the same turn between coil 1 and coil 2 in each phase. When the SFCL is operated under the normal condition, the flux generated in the iron core is zero because the flux generated between two coils of each single phase is canceled out. Therefore, the SFCL's impedance is zero, and the SFCL has negligible influence on the power system. However, if a fault occurs in any single-phase among three phases, the flux generated in the iron core is not zero any more. The flux makes HTSC elements of all phases quench irrespective of the fault type, which reduces the current of fault phase as well as the current of sound phase. It was observed that the fault current limiting characteristics of the suggested SFCL were dependent on the quench characteristics of HTSC elements in all three phases.

  • PDF

개선된 자속구속형 전류제한기의 동작 특성 분석

  • Kim, Yong-Jin;Du, Ho-Ik;Kim, Min-Ju;Lee, Dong-Hyeok;Han, Byeong-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.215-215
    • /
    • 2009
  • Improved flux-lock type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO coated conductor. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO coated conductor was connected with secondary coil in parallel. In this paper, we investigated the current limiting characteristics through initial line current after fault initiation. through the analysis, it was shown that the smaller initial line current is superior to current limiting characteristics and a point of view of power burden of the YBCO coated conductor.

  • PDF