• Title/Summary/Keyword: Fault current analysis

Search Result 715, Processing Time 0.041 seconds

Analysis of Series Arc-Fault Signals Using Wavelet Transform From Non-linear Loads (웨이블렛 변환을 이용한 비선형 부하 전원선에서의 직렬 아크고장 신호 분석)

  • Bang, Sun-Bae;Park, Chong-Yeun;Jang, Mog-Soon;Choi, Won-HO
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1470-1477
    • /
    • 2008
  • In this paper, a new detection method of series arc-fault signals occurring at the wiring of home appliances is proposed. The discrete wavelet transform was used for the numerical analysis of the variation rate in peak, RMS, noise energy, shoulder of the arc-fault current wave. As a results, the arc distinction threshold value of these variation rates was about 0.1 in most cases. The arc-fault current of the loads with the active PFC circuit showed a high rate of variation in noise energy and shoulder, but arc-fault current of the loads without the active PFC circuit showed a high rate of variation in peak and RMS. The arc fault current in resistive loads showed a high rate of variation in shoulder.

The Stability Analysis of Power System Installed Superconducting Fault Current Limiter (고온 초전도 한류기가 설치된 전력 시스템의 안정도 해석)

  • Lee, Seung-Je;Lee, Chan-Ju;Go, Tae-Guk
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.5
    • /
    • pp.227-232
    • /
    • 1999
  • The stability of Power system installed Hi-Tc Superconducting Fault Current Limiter(SFCL) is analyzed as a process of developing SFCL. For investigation, a simple mimic system(only one generator) is assumed and then the circuit with SFCL in that system is solved for transient performance. In case the SFCL is installed in the power system, it protected synchronization more effectively both in symmetrical 3-phase fault and single phase line to ground fault in that the machine remains in synchronism for the more time than of without superconducting fault current limiter. It shows that the superconducting fault current limiter not only limits fault current but also protest synchronism. So for design of this SFCL, its synchronism protection property must be considered.

  • PDF

Comparative Analysis on Current Limiting Characteristics of Hybrid Superconducting Fault Current Limiters (SFCLs) with First Half Cycle Limiting and Non-Limiting Operations

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.659-663
    • /
    • 2012
  • The application of large power transformer into a power distribution system was inevitable due to the increase of power demand and distributed generation. However, the decrease of the power transformer's impedance caused the short-circuit current of the power distribution system to be increase thus, the higher short-circuit current exceeded the cut-off ratings of the protective devices such as circuit breaker. To solve these problems, several countermeasures have been proposed to protect the power system effectively from higher fault current and the superconducting fault current limiter (SFCL) has been expected to be the promising countermeasure. In spite of excellent current limiting performances of the SFCL, on the other hand, the efforts to apply the SFCL into power system has been delayed due to both the limited spaces for the SFCL's installation and its long recovery time after the fault removal. In order to solve these problems, a hybrid SFCL, which can perform either first half cycle limiting of first half cycle non-limiting operation, has been developed by corporation of LSIS (LS Industrial System) and KEPCO (Korea Electric Power Corporation). In this paper, we tried to requirements hybrid SFCL by PSCAD/EMTDC. Simulation results of our analysis of the hybrid SFCL is that its accompanied the characteristics both the limit the fault current and quick recovery caused by the less impact from superconductor.

Analysis of Serial Arc with DC Current (DC 전류에 의한 직렬 아크 특성 분석)

  • Ban, Gi-Jong;Nam, Moon-Hyun;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1700-1701
    • /
    • 2007
  • DC Arc Fault Current is an electric discharge which is occurred in two opposite electrode. In this paper, DC arc detection device is designed for the display of DC arc fault current which is occurred in the local electric network with DC Power. This DC arc is one of the main causes of electric fire. Arc fault in electrical network has the characteristics of low current, high impedance and low frequency. DC Arc current detection device is designed for the display of arc fault current which has the modified arc characteristics.

  • PDF

Analysis on Fault Current Limiting Characteristics According to Peak Current Limiting Setting of a Flux-Lock Type SFCL with Peak Current Limiting Function (피크전류제한 설정에 따른 피크전류제한 기능을 갖는 자속구속형 초전도한류기의 고장전류제한 특성 분석)

  • Ko, Seok-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.68-73
    • /
    • 2012
  • In this paper, the fault current limiting characteristics of a flux-lock type superconducting fault current limiter (SFCL) with peak current limiting function were analyzed through its short-circuit tests. The setting condition for the peak current limiting operation was derived from its electrical equivalent circuit, which was dependent on the inductance ratio between the third coil and the first coil. Through the analysis on the short-circuit tests for the flux-lock type SFCLs with the different inductance ratio between the third coil and the first coil, the setting value for the peak current limiting operation of the flux-lock type SFCL with peak current limiting function could be confirmed to be adjusted with the variation of the inductance ratio between the third coil and the first coil.

Analysis of Transmission Power System with Superconducting Fault Current Limiter for Reducing a Fault Current (초전도 한류기 적용을 통한 모의 송전계통의 고장 전류 저감 분석)

  • Kim, Myong-Hyon;Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul;Choo, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.718-719
    • /
    • 2011
  • Lately, the demand for electrical power has been significantly increased. As a result a power transmission system has been improved. On the other hand fault current increased more than past. Superconducting fault current limiter (SFCL) is one of the solutions to limit fault current. However, SFCL's research has not advanced in a power transmission system fully. Therefore, we studied effect of SFCL in a power transmission system. The power distribution system is open-loop circuit, but a power transmission system is closed-loop system. Consequently, Fault current in a power transmission system is larger than fault current in a power distribution system. we exerimented a simple closed-loop power transmission system circuit.

  • PDF

Analysis on Fault Current Limiting Characteristics of Flux-Lock Type SFCL Using Magnetic Flux Application Circuit (자기인가회로를 이용한 자속구속형 초전도한류기의 고장전류제한 특성 분석)

  • Go, Ju-Chan;Lim, Seung-Taek;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.37-41
    • /
    • 2017
  • In this paper, the fault current limiting characteristics of the flux-lock type SFCL (superconducting fault current limiter) using magnetic application circuit were analyzed. The flux-lock type SFCL has the structure to install the magnetic application circuit, which can increase the resistance of HTSC ($high-T_C$ superconducting element comprising) the SFCL. To analyze the fault current limiting effect of the flux-lock type SFCL through the magnetic flux application circuit, the flux-lock type SFCL either with the magnetic flux circuit or without the magnetic flux circuit was constructed and the fault current limiting characteristics of the SFCL were compared each other through the short-circuit tests.

Experimental Analysis of Superconducting Fault Current Limiter Wound with Two Different HTS wires in Parallel

  • Kim, Ji-Tae;Jang, Jae-Young;Park, Dong-Keun;Chang, Ki-Sung;Kim, Young-Jae;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.2
    • /
    • pp.30-33
    • /
    • 2008
  • Several kinds of superconducting fault current limiters (SFCLs), which reduces huge fault current, have been developing by many research groups. The SFCL has no impedance during normal operation, so it dose not give any influence to electric power system. The resistive type SFCL reduces the fault current with the impedance generated in the superconducting part of the SFCL when the fault current exceeds the critical current of SFCL. In this paper, a new type resistive SFCL made of bifilar coil wound with two different high-Tc superconducting (HTS) wires in parallel. Although a bifilar coil has theoretically no inductance, the bifilar coil made in this paper could generate inductance at fault. The specifications of the used two wires were considerably different, thus current distribution between the two HTS wire was different at fault. When the fault current exceeded the critical current of one wire in the bifilar coil, the momentary sharp increase of impedance was detected. Base on the results, a new resistive type SFCL can generate not only resistance but also inductance, which can be used to control a fault current in the future.

Analysis on Current Limiting Characteristics of Series Connection-type SFCL with Two Magnetically Coupled Circuits Applied into a Simulated Power System (모의전력계통에 적용된 두 개의 자기결합 회로를 갖는 직렬연결형 초전도 전류제한기의 전류제한 특성 분석)

  • Ko, Seok-Cheol;Lee, Shin-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.68-72
    • /
    • 2013
  • The series connection-type superconducting fault current limiter (SFCL) with two magnetically coupled circuits was suggested and its effectiveness through the analysis on the current limiting and recovery characteristics was described. The fault current limiting characteristics of the proposed SFCL as well as the load voltage sag compensating characteristics according to the winding direction were investigated. To confirm the fault current limiting and the voltage sag suppressing characteristics of the this SFCL, the short-circuit tests for the simulated power system with the series connection-type SFCL were carried out. The series connection-type SFCL designed with the additive polarity winding was shown to perform more effective fault current limiting and load voltage sag compensating operations through the fast quench occurrence right after the fault appears and the fast recovery operation after the fault removes than that with the subtractive polarity winding.

Analysis on the Protective Coordination in Power Distribution System with Superconducting Fault Current Limiter (배전계통에 초전도 전류 제한기 적용시 보호협조 분석)

  • Ahn, Jae-Min;Kim, Jin-Seok;Moon, Jong-Fil;Lim, Sung-Hun;Kim, Jae-Chul;Kim, Chul-Hwan;Hyun, Ok-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.755-760
    • /
    • 2008
  • The increase of fault current due to larger power demand has caused the capacity of power machines in grid to increase. To protect the power system effectively from the larger fault current, several countermeasures have been proposed. Among them, the superconducting fault current limiter (SFCL) has been expected as one of the most effective solutions. Therefore, to introduce SFCL into power distribution system, the analysis on protection in power distribution system with SFCL is essential. In this paper, the problems of the protective coordination in power distribution system with SFCL were described.