• Title/Summary/Keyword: Fault branch

Search Result 65, Processing Time 0.026 seconds

A Coordination Algorithm For The Protection Of Large Wind Farms (대단위 풍력발전단지를 위한 보호협조 알고리즘)

  • Kwon, Young-Jin;Kang, Sang-Hee;Ryu, Gi-Chan;Song, Hwang-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.527-528
    • /
    • 2006
  • This paper presents a coordination algorithm for the protection of large wind farm of which consists loop connection system that is able to disconnect fault section from wind farm. The proposed coordination algorithm can distinguish between inner and outer fault of wind farm. by using changing of ratio generator output current over loop branch current connected to each generator. A series of PSCAD/EMTDC simulation results have shown effectiveness of the proposed algorithm.

  • PDF

The Effectiveness due to fixed position change of fault protective wire on catenary system (전차선로에서 보호선 설치 위치변경에 따른 효과 검토)

  • Ryoo, Hyang-Bok;Ahn, Young-Hoon;Hyun, Chung-Il;Kang, Seung-Wook
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1456-1459
    • /
    • 2007
  • Protective equipments have a very important protection role in power accident on catenary line. These equipments are installed on electrical pole. The poles have complicated with many bands(moveable bracket, branch wire anchor, shield wire, etc). So we have improved bands and installed bands on pole to test technical condition. The Result has showed effectiveness due to fixed position change of fault protective wire and to improve band shape. For example, reduction of band made cost, simplification of installing, correct position of protective wire and shield wire.

  • PDF

A Faulty Synchronous Machine Model for Efficient Interface with Power System

  • Amangaldi Koochaki
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.812-819
    • /
    • 2015
  • This paper presents a new approach for simulating the internal faults of synchronous machines using distributed computing and Large Change Sensitivity (LCS) analysis. LCS analysis caters for a parallel solution of 3-phase model of a faulted machine within the symmetrical component-based model of interconnected network. The proposed method considers dynamic behavior of the faulty machine and connected system and tries to accurately solve the synchronous machine’s internal fault conditions in the system. The proposed method is implemented in stand-alone FORTRAN-based phasor software and the results have been compared with available recordings from real networks and precisely simulated faults by use of the ATP/EMTP as a time domain software package. An encouraging correlation between the simulation results using proposed method, ATP simulation and measurements was observed and reported. The simplified approach also enables engineers to quickly investigate their particular cases with a reasonable precision.

Numerical data processing on expert system for power system fault restoration - in IBM PC Turbo prolog - (계통 사고 복구 전문가 시스템에서의 수치 데이타 처리 - IBM PC 용 Turbo prolog 에서 -)

  • Choi, Joon-Young;Park, In-Gyu;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.316-320
    • /
    • 1987
  • This paper deals with expert system for power system fault restoration and accompanying numerical data processing. Nowadays, expert system which is a branch or artificial intelligence expands its application area to many fields. And it requires computer language for A.I. to be versatile. Expert system for power system handles numerous numerical data and language for A.I. has its deficiency in numerical data processing. However some recent version of the A.I. language rind ways of overcoming this dilemma by giving the way or linking conventional algorithmic languages to them. This study presents numerical data processing routines described in Turbo prolog which is run in IBM PC and linking numerical data processing routines written in Turbo C to Turbo prolog.

  • PDF

Fault Diagnosis Management Model using Machine Learning

  • Yang, Xitong;Lee, Jaeseung;Jung, Heokyung
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.2
    • /
    • pp.128-134
    • /
    • 2019
  • Based on the concept of Industry 4.0, various sensors are attached to facilities and equipment to collect data in real time and diagnose faults using analyzing techniques. Diagnostic technology continuously monitors faults or performance degradation of facilities and equipment in operation and diagnoses abnormal symptoms to ensure safety and availability through maintenance before failure occurs. In this paper, we propose a model to analyze the data and diagnose the state or failure using machine learning. The diagnosis model is based on a support vector machine (SVM)-based diagnosis model and a self-learning one-class SVM-based diagnostic model. In the future, it is expected that this model can be applied to facilities used in the entire industry by applying the actual data to the diagnostic model proposed in this paper, conducting the experiment, and verifying it through the model performance evaluation index.

Probabilistic seismic assessment of mega buckling-restrained braced frames under near-fault ground motions

  • Veismoradi, Sajad;Darvishan, Ehsan
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.487-498
    • /
    • 2018
  • Buckling-restrained braces are passive control devices with high level of energy dissipation ability. However, they suffer from low post-yield stiffness which makes them vulnerable to severe ground motions, especially near-field earthquakes. Among the several methods proposed to improve resistance of BRB frames, mega-brace configuration can be a solution to increase frame lateral strength and stiffness and improve distribution of forces to prevent large displacement in braces. Due to the limited number of research regarding the performance of such systems, the current paper aims to assess seismic performance of BRB frames with mega-bracing arrangement under near-field earthquakes via a detailed probabilistic framework. For this purpose, a group of multi-story mega-BRB frames were modelled by OpenSEES software platform. In the first part of the paper, simplified procedures including nonlinear pushover and Incremental Dynamic Analysis were conducted for performance evaluation. Two groups of near-fault seismic ground motions (Non-pulse and Pulse-like records) were considered for analyses to take into account the effects of record-to-record uncertainties, as well as forward directivity on the results. In the second part, seismic reliability analyses are conducted in the context of performance based earthquake engineering. Two widely-known EDP-based and IM-based probabilistic frameworks are employed to estimate collapse potential of the structures. Results show that all the structures can successfully tolerate near-field earthquakes with a high level of confidence level. Therefore, mega-bracing configuration can be an effective alternative to conventional BRB bracing to withstand near-field earthquakes.

A Development of Visualization Software for Protective Engineering in Low-Voltage Power Systems (저압계통 보호 엔지니어링을 위한 시각화 소프트웨어 개발)

  • Yun, Sang-Yun;Lee, Nam-Ho;Lee, Wook-Hwa;Lee, Jin;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.7
    • /
    • pp.297-305
    • /
    • 2006
  • This paper summarizes a development of visualization software for protective engineering in low-voltage power systems. The study is concentrated on the following aspects. First, a software engineering method is applied for designing the object-oriented program. The design and implementation of a Graphic User Interface(GUI) and its integration to a power system framework are developed using object-oriented programming(OOP) in Visual C++. Second, we develop the short circuit analysis module that oriented a low-voltage power system. It is possible to calculate a peak, symmetrical RMS, DC component and asymmetrical fault currents for each time. And it is the first software that can calculate the fault current for single branch of three-phase system. The calculation accuracy is compared with commercial software, and the libraries of low-voltage components are served for convenience use. Third, protective engineering functions are equipped. It is possible to automatically select the circuit breaker which based on the user input characteristics and the fault current calculation and examine the protective coordination. Through the case study, we verified that the developed software can be effectively used to examine the protective engineering in low-voltage power systems.

Developing a New Risk Assessment Methodology for Distribution System Operators Regulated by Quality Regulation Considering Reclosing Time

  • Saboorideilami, S.;Abdi, Hamdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1154-1162
    • /
    • 2014
  • In the restructured electricity market, Performance-Based Regulation (PBR) regime has been introduced to the distribution network. To ensure the network stability, this regime is used along with quality regulations. Quality regulation impose new financial risks on distribution system operators (DSOs). The poor quality of the network will result in reduced revenues for DSOs. The mentioned financial risks depend on the quality indices of the system. Based on annual variation of these indices, the cost of quality regulation will also vary. In this paper with regard to reclosing fault in distribution network, we develop a risk-based method to assess the financial risks caused by quality regulation for DSOs. Furthermore, in order to take the stochastic behavior of the distribution network and quality indices variations into account, time-sequential Monte Carlo simulation method is used. Using the proposed risk method, the effect of taking reclosing time into account will be examined on system quality indicators and the cost of quality regulation in Swedish rural reliability test system (SRRTS). The results show that taking reclosing fault into consideration, affects the system quality indicators, particularly annual average interruption frequency index of the system (SAIFI). Moreover taking reclosing fault into consideration also affects the quality regulations cost. Therefore, considering reclosing time provides a more realistic viewpoint about the financial risks arising from quality regulation for DSOs.

Fragility assessment of shear walls coupled with buckling restrained braces subjected to near-field earthquakes

  • Beiraghi, Hamid
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.389-402
    • /
    • 2019
  • Reinforced concrete walls and buckling restrained braces are effective structural elements that are used to resist seismic loads. In this paper, the behavior of the reinforced concrete walls coupled with buckling restrained braces is investigated. In such a system, there is not any conventional reinforced concrete coupling beam. The coupling action is provided only by buckling restrained braces that dissipate energy and also cause coupling forces in the wall piers. The studied structures are 10-, 20- and 30-story ones designed according to the ASCE, ACI-318 and AISC codes. Wall nonlinear model is then prepared using the fiber elements in PERFORM-3D software. The responses of the systems subjected to the forward directivity near-fault (NF) and ordinary far-fault (FF) ground motions at maximum considered earthquake (MCE) level are studied. The seismic responses of the structures corresponding to the inter-story drift demand, curvature ductility of wall piers, and coupling ratio of the walls are compared. On average, the results show that the inter-story drift ratio for the examined systems subjected to the far-fault events at MCE level is less than allowable value of 3%. Besides, incremental dynamic analysis is used to examine the considered systems. Results of studied systems show that, the taller the structures, the higher the probability of their collapse. Also, for a certain peak ground acceleration of 1 g, the probability of collapse under NF records is more than twice this probability under FF records.

Kinematics and ESR Ages for Fault Gouges of the Quaternary Jingwan Fault, Dangjin, western Korea (당진 지역 제4기 진관단층의 운동 특성과 단층비지의 ESR 연령)

  • Choi, Pom-Yong;Hwang, Jae Ha;Bae, Hankyoung;Lee, Hee-Kwon;Kyung, Jai Bok
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • In order to outline the kinematics and movement history of a new Quaternary fault, Jingwan Fault in Dangjin, West Korea, we analyzed the geometry of the fault zone composed of a few gouge zones, and made ESR dating for fault gouge materials. The $N55^{\circ}E$ striking Jingwan Fault is a normal fault and exhibits a gradual change in dip (gentle in the lower part, steep in the upper part), indicating a listric fault. As for the fault gouge zone, its thickness varies and reaches 2~3 cm in the lower part or between basement rocks, and 20~30 cm in the middle-upper part or between the basement and Quaternary deposit. It is observed in the latter case that more than three gouge zones develop with different colors, and branch out and re-merge, or they are partly superimposed, indicating different movement episodes. The cumulative displacement is estimated to be about 10 m using the geological cross-sections, from which it is inferred that the total length of fault may be about 2.5 km on the basis of the empirical relation between cumulative displacement and fault length. Therefore, a more study would be needed to verify the entire fault length. The results of ESR dating for three gouge samples at different spots along the fault yields ages of $651{\pm}47$, $649{\pm}96$, and $436{\pm}66ka$, indicating at least two movement episodes. Slickenlines observed on the fault planes indicate a pure dip slip (normal faulting), which suggests that the ENE-WSW trending Jingwan Fault was presumably moved under a NNW-SSE extensional environment.