• Title/Summary/Keyword: Fault accidents

Search Result 176, Processing Time 0.024 seconds

New Diagnostic Technique and Device for Lightning Arresters by Analyzing the Wave Height Distribution of Leakage Currents (누설전류의 파고분포 분석에 의한 새로운 피뢰기 진단기술 및 장치)

  • 길경석;한주섭;송재영;조한구;한문섭
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.562-567
    • /
    • 2003
  • Lightning arresters are deteriorated by repetition of protective operation against overvoltages or impulse currents in environments of its use. If a deteriorated arrester is left in power lines, it can lead to an accident such as a line to ground fault even in a normal system. Therefore, it is necessary to eliminate the deteriorated arrester in advance by checking the soundness of arresters on a regular basis, and to ensure the reliability of power systems by preventing accidents. Various deterioration diagnostic techniques and devices are suggested, and most of which measure leakage current components as an indicator of arrester ageing. However, the techniques based on the magnitude of leakage current measure simply RMS or peak value of leakage current components and do not provide detailed information needed in the diagnosis. In this study, we found that the wave height distributions of the total leakage currents are remarkably changed or a new wave height are produced with the progress of arrester deterioration. To propose a new technique for the diagnosis, we designed a leakage current detection unit and an analysis program which can measure leakage current magnitudes and analyze wave height distributions. From the experimental results, we confirmed that the proposed technique by analyzing the wave height distribution can simply diagnose the mode of defects such as a partial damage and an existence of punctures in arresters as well as deterioration of arresters.

Experimental Studies on the Risk Assessment of Electrical Fire and Shock of LED Lighting for Outdoor (옥외용 LED 조명의 전기화재 및 감전 위험성 평가에 대한 실험적 고찰)

  • Kim, Hyang-Kon;Gil, Hyoung-Jun;Kim, Dong-Ook;Kim, Dong-Woo;Lee, Ki-Yoen;Moon, Hyun-Wook;Kim, Hyeog-Soo;Kim, Myung-Soo;Kim, Man-Geon
    • Congress of the korean instutite of fire investigation
    • /
    • 2011.04a
    • /
    • pp.77-97
    • /
    • 2011
  • In this paper, we studied risk assessments of electrical fire and shock of LED lightings for outdoor. We examined national regulations about the LED lighting for outdoor and analyzed the appearances and compositions of LED lightings. And, We experimented about water proof, line to line fault, line to line breakdowm, overvoltage, line to line leakage in overhead line or water of LED lighting. From experimental results, we know that there are risks of electrical fire and shock by abnormal conditions at the LED lighting. Therefore, the uses of protective devices and insulated type of converter are required for the electrical safety. We expect that the results of this study would be helpful for the improvement of regulations and standards for electrical safety and for the investigations of electrical accidents of LED lightings.

  • PDF

Development of the SIS Evaluation Method Based on Reliability Analysis (신뢰도 분석에 근거한 SIS 평가 방법론 개발)

  • Kim In-Won;Jin Sang-Hwa;Song Kwang Ho;Yeo Yeong-Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.66-73
    • /
    • 2002
  • In this study a new SIS evaluation method based on the reliability analysis has been developed. It evaluates the Safety Integrity Level (SIL) using the Fault Tree Analysis (FTA), and when the SIL falls short of the systems target level, through the reliability analysis and system retrofit, this method will satisfy the aimed SIL. A hazard evaluation was carried out on the 415V Diesel BUS to verify the SIL evaluation method based on the reliability analysis. The availability of the original 415V Diesel BUS was $99.40\%$, which comes under the category of SIL 2. After exchanging the diesel generator and the isolator switch using the developed evaluation method, the availability rose to $99.94\%$, SIL 3. By applying the method presented in this study, not only will it reduce the maintenance cost due to the prevention of accidents and reduction of loss, but also maximize the reliability of the system.

  • PDF

The measurement of the half period modulated pulse on earth for detection of a underground electric leakage point (지중선로 누전점 탐지를 위한 반주기 변조된 대지 펄스 측정)

  • Kim, Jae-Hyun;Jeon, Jeong-Chay;Yoo, Jae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5123-5127
    • /
    • 2011
  • Research and development for the technology, that is about maintenance and accidents prevention of underground power distribution line, are demanding. The precise detection of leakage point of underground power line is very important, because it is difficult to detect the exact location of a fault in underground power line and to repair faults. When earth electric potential is measured to detect underground electric leakage point after transmitting AC electric pulse wave to underground power line, it must be measured in a specific half period of AC pulse wave because the distribution of the electric earth potential varies with the polarity of the transmitted wave. In this paper we proposed the measurement of half period modulated earth potential as a method to detect a underground leakage point. And We compared the proposed method with other methods. Through experiments we verified that the proposed method can be implemented and operated properly.

A study on imaging device sensor data QC (영상장치 센서 데이터 QC에 관한 연구)

  • Dong-Min Yun;Jae-Yeong Lee;Sung-Sik Park;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.52-59
    • /
    • 2022
  • Currently, Korea is an aging society and is expected to become a super-aged society in about four years. X-ray devices are widely used for early diagnosis in hospitals, and many X-ray technologies are being developed. The development of X-ray device technology is important, but it is also important to increase the reliability of the device through accurate data management. Sensor nodes such as temperature, voltage, and current of the diagnosis device may malfunction or transmit inaccurate data due to various causes such as failure or power outage. Therefore, in this study, the temperature, tube voltage, and tube current data related to each sensor and detection circuit of the diagnostic X-ray imaging device were measured and analyzed. Based on QC data, device failure prediction and diagnosis algorithms were designed and performed. The fault diagnosis algorithm can configure a simulator capable of setting user parameter values, displaying sensor output graphs, and displaying signs of sensor abnormalities, and can check the detection results when each sensor is operating normally and when the sensor is abnormal. It is judged that efficient device management and diagnosis is possible because it monitors abnormal data values (temperature, voltage, current) in real time and automatically diagnoses failures by feeding back the abnormal values detected at each stage. Although this algorithm cannot predict all failures related to temperature, voltage, and current of diagnostic X-ray imaging devices, it can detect temperature rise, bouncing values, device physical limits, input/output values, and radiation-related anomalies. exposure. If a value exceeding the maximum variation value of each data occurs, it is judged that it will be possible to check and respond in preparation for device failure. If a device's sensor fails, unexpected accidents may occur, increasing costs and risks, and regular maintenance cannot cope with all errors or failures. Therefore, since real-time maintenance through continuous data monitoring is possible, reliability improvement, maintenance cost reduction, and efficient management of equipment are expected to be possible.

Innovation of the Underhand Closed Bench (UCB) Mining Method Utilizing Large-Scale Blasting in Deep Underground Mining (심부 지하광산 개발에서의 대규모 발파를 활용한 Underhand Closed Bench (UCB) 채광 혁신기술)

  • Seogyeong Lee;Se-Wook Oh;Sang-Ho Cho;Junhyeok Park
    • Explosives and Blasting
    • /
    • v.42 no.2
    • /
    • pp.29-41
    • /
    • 2024
  • The increasing demand for metallic minerals due to global growth and the continued exploitation of near-surface minerals requires safe and efficient ways to mine ores present in deep mines. In deep mines, stresses concentrated around the cavity increase, which can lead to problems such as induced seismicity and rockbursts. In addition, the transfer of energy from blasting to deeply located faults can cause fault slip, which can lead to earthquakes, and controlling these events is key to deep mining methods. In this technical report, we will introduce the Underhand Closed Bench (UCB) mining method, which can control possible accidents and increase productivity when mining in deep mines.

Prognosis of Blade Icing of Rotorcraft Drones through Vibration Analysis (진동분석을 통한 회전익 드론의 블레이드 착빙 예지)

  • Seonwoo Lee;Jaeseok Do;Jangwook Hur
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Weather is one of the main causes of aircraft accidents, and among the phenomena caused by weather, icing is a phenomenon in which an ice layer is formed when an object exposed to an atmosphere below a freezing temperature collides with supercooled water droplets. If this phenomenon occurs in the rotor blades, it causes defects such as severe vibration in the airframe and eventually leads to loss of control and an accident. Therefore, it is necessary to foresee the icing situation so that it can ascend and descend at an altitude without a freezing point. In this study, vibration data in normal and faulty conditions was acquired, data features were extracted, and vibration was predicted through deep learning-based algorithms such as CNN, LSTM, CNN-LSTM, Transformer, and TCN, and performance was compared to evaluate blade icing. A method for minimizing operating loss is suggested.

A Study on the Reliability Analysis and Risk Assessment of Liquefied Natural Gas Supply Utilities (천연가스 공급설비에 대한 기기신뢰도 분석 및 위험성 평가)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-20
    • /
    • 2003
  • Natural gas has been supplied through underground pipelines and valve stations as a new city gas in Seoul. In contrast to its handiness the natural gas has very substantial hazards due to fires and explosions occurring from careless treatments or malfunctions of the transporting system. The main objectives of this study are to identify major hazards and to perform risk assessments after assessing reliabilities of the composing units in dealing with typical pipeline networks. there-fore two method, fault tree analysis ;1nd event tree analysis, are used here. Random valve stations are selected and considered its situation in location. The value of small leakage, large rupture, and no supply of liquefied natural gas is estimated as that of top event. By this calculation the values of small leakage are 3.29 in I)C valve station, 1.41 in DS valve station, those of large rup-lure are $1.90Times10_{-2}$ in DC valve station, $2.32$\times$10^{-2}$ in DS valve station, and those of no supply of LNG to civil gas company are $2.33$\times$10 ^{-2}$ , $2.89$\times$10^{-2}$ in each valve station. And through minimal cut set we can find the parts that is important and should be more important in overall system. In DC valve station one line must be added between basic event 26,27 because the potential hazard of these parts is the highest value. If it is added the failure rate of no supply of LNG is reduced to one fourth. In DS valve station the failure rate of basic event 4 is 92eye of no supply of LNG. Therefore if the portion of this part is reduced (one line added) the total failure rate can be decreased to one tenth. This analytical study on the risk assessment is very useful to prepare emergency actions or procedures in case of gas accidents around underground pipeline networks and to establish a resolute gas safety management system for loss prevention in Seoul metropolitan area.

Development of IoT-based real-time Toxic Chemical management System (IoT 기반의 실시간 유해 화학물 관리 시스템 개발)

  • Kang, Min-Soo;Ihm, Chunhwa;Jung, Yong-Gyu;Lee, Minho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.143-149
    • /
    • 2016
  • Recent accidents caused by toxic chemicals and the social problems caused by frequent. As of 2010, there are more than 100,000 types of deadly toxic chemicals being distributed throughout Korea, and severely intoxicated patients along with an enormous number of patients can be induced at the time of an accident involving deadly toxic chemicals. Internationally, the seriousness of large-scale disasters due to a NBC disaster (nuclear, biologic and chemical disaster) is being highlighted as well. So, we obtain the information of the RFID tag attached to a glass bottle with containing the toxic chemical to transfer the data to the smart device has been studied a system that can monitor the status of the toxic chemical in real time. The proposed system is the information was sent to the main system using a zigbee communication by recognizing the tag vial containing the toxic chemical with the 13.56MHz bandwidths good permeability. User may check the information in real time by utilizing the smart device. However, the error of the system for managing the toxic chemical generates a result that can not be predicted. Failure of the system was detecting the error by using a comparator as this can cause an error. And the detected error proposed a duplex system so that they do not affect the overall system.

Nonchange of Grounding Current due to Equipment Measuring Insulation Resistance (절연저항 측정 장치에 의한 지락사고 전류의 비변화)

  • Um, Kee-Hong;Lee, Kwan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.175-180
    • /
    • 2015
  • With progress in industrialization, facilities for generating, delivering, and receiving high levels of electric power are in great demand. The scale of electric power equipment is increasing in both size and complexity. This has contributed to the development of our modern, high-tech and information-based society. However, if the generation of electric power is suspended due to unexpected accidents at power facilities or power stations, a range of equipment the operations of which are dependent on electric power can be damaged, causing substantial socioeconomic losses in an industrial society. A great deal of time and money would be expended to repair damaged facilities at a power station, causing enormous economic loss.In order to detect the deterioration processes of power cables, and to prevent the destruction of power cables, the operation status of power cables should be monitored on a regular basis. We have installed equipment at Korea Western Power Co., Ltd., located in Taean, in order to predict and prevent the destruction of power cables. This is an entirely new installation: a set of equipment invented specifically to measure the insulation resistance of power cables. Installation of the equipment does not cause the flow of earth fault current. This ensures accurate measurement of insulation resistance values by the equipment. We have been studying this equipment in order to develop preventive technology that would show the deterioration processes of power cables.