• Title/Summary/Keyword: Fault Tolerant Control System

Search Result 199, Processing Time 0.025 seconds

PDSO tuning of PFC-SAC fault tolerant flight control system

  • Alaimo, Andrea;Esposito, Antonio;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.349-369
    • /
    • 2019
  • In the design of flight control systems there are issues that deserve special consideration and attention such as external perturbations or systems failures. A Simple Adaptive Controller (SAC) that does not require a-priori knowledge of the faults is proposed in this paper with the aim of realizing a fault tolerant flight control system capable of leading the pitch motion of an aircraft. The main condition for obtaining a stable adaptive controller is the passivity of the plant; however, since real systems generally do not satisfy such requirement, a properly defined Parallel Feedforward Compensator (PFC) is used to let the augmented system meet the passivity condition. The design approach used in this paper to synthesize the PFC and to tune the invariant gains of the SAC is the Population Decline Swarm Optimization ($P_DSO$). It is a modification of the Particle Swarm Optimization (PSO) technique that takes into account a decline demographic model to speed up the optimization procedure. Tuning and flight mechanics results are presented to show both the effectiveness of the proposed $P_DSO$ and the fault tolerant capability of the proposed scheme to control the aircraft pitch motion even in presence of elevator failures.

Policy Iteration Algorithm Based Fault Tolerant Tracking Control: An Implementation on Reconfigurable Manipulators

  • Li, Yuanchun;Xia, Hongbing;Zhao, Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1740-1751
    • /
    • 2018
  • This paper proposes a novel fault tolerant tracking control (FTTC) scheme for a class of nonlinear systems with actuator failures based on the policy iteration (PI) algorithm and the adaptive fault observer. The estimated actuator failure from an adaptive fault observer is utilized to construct an improved performance index function that reflects the failure, regulation and control simultaneously. With the help of the proper performance index function, the FTTC problem can be transformed into an optimal control problem. The fault tolerant tracking controller is composed of the desired controller and the approximated optimal feedback one. The desired controller is developed to maintain the desired tracking performance at the steady-state, and the approximated optimal feedback controller is designed to stabilize the tracking error dynamics in an optimal manner. By establishing a critic neural network, the PI algorithm is utilized to solve the Hamilton-Jacobi-Bellman equation, and then the approximated optimal feedback controller can be derived. Based on Lyapunov technique, the uniform ultimate boundedness of the closed-loop system is proven. The proposed FTTC scheme is applied to reconfigurable manipulators with two degree of freedoms in order to test the effectiveness via numerical simulation.

A Fault-tolerant Inertial Navigation System for UAVs Based on Partition Computing (파티션 컴퓨팅 기반의 무인기 고장 감내 관성 항법 시스템)

  • Jung, Byeongyong;Kim, Jungguk
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.1
    • /
    • pp.29-39
    • /
    • 2015
  • When new inertial navigation systems for an unmanned aerial vehicles are being developed and tested, construction of a fault-tolerant system is required because of various types of hazards caused by S/W and H/W faults. In this paper, a new fault-tolerant flight system that can be deployed into one or more FCCs (Flight Control Computers) is introduced, based on a partition scheme wherein each OFP (Operational Flight Program) partition uses an independent CPU and memory slot. The new fault-tolerant navigation system utilizes one or two FCCs, and executes a primary navigation OFP under development and a stable shadow OFP partition on each node. The fault-tolerant navigation system based on a single FCC can be used for UAVs with small payloads. For larger UAVs, an additional FCC with two OFP partitions can be used to provide both H/W and S/W fault-tolerance. The developed fault-tolerant navigation system significantly removes various hazards in testing new navigation S/Ws for UAVs.

Predictive Hybrid Redundancy using Exponential Smoothing Method for Safety Critical Systems

  • Kim, Man-Ho;Lee, Suk;Lee, Kyung-Chang
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.126-134
    • /
    • 2008
  • As many systems depend on electronics, concern for fault tolerance is growing rapidly. For example, a car with its steering controlled by electronics and no mechanical linkage from steering wheel to front tires (steer-by-wire) should be fault tolerant because a failure can come without any warning and its effect is devastating. In order to make system fault tolerant, there has been a body of research mainly from aerospace field. This paper presents the structure of predictive hybrid redundancy that can remove most erroneous values. In addition, several numerical simulation results are given where the predictive hybrid redundancy outperforms wellknown average and median voters.

An $H_{\infty}$ Fault Tolerant Control for Nonlinear Time delay Systems with Actuator Failures (액츄에이터 고장을 고려한 비선형 시간지연시스템의 $H_{\infty}$ 고장허용제어)

  • Yoo, Seog-Hwan
    • Journal of Applied Reliability
    • /
    • v.12 no.3
    • /
    • pp.215-224
    • /
    • 2012
  • This paper deals with a design of fault tolerant state feedback controllers for continuous time nonlinear time delay systems with actuator failures. The goal is to find an asymptotically stabilizing controller such that the closed loop system achieves the prescribed $H_{\infty}$ performance objective in the actuator fault cases. Based on a sum of squares (SOS) approach, a design method for $H_{\infty}$ fault tolerant controller is presented. In order to demonstrate our design method, a numerical example is provided.

Integrating Fuzzy based Fault diagnosis with Constrained Model Predictive Control for Industrial Applications

  • Mani, Geetha;Sivaraman, Natarajan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.886-889
    • /
    • 2017
  • An active Fault Tolerant Model Predictive Control (FTMPC) using Fuzzy scheduler is developed. Fault tolerant Control (FTC) system stages are broadly classified into two namely Fault Detection and Isolation (FDI) and fault accommodation. Basically, the faults are identified by means of state estimation techniques. Then using the decision based approach it is isolated. This is usually performed using soft computing techniques. Fuzzy Decision Making (FDM) system classifies the faults. After identification and classification of the faults, the model is selected by using the information obtained from FDI. Then this model is fed into FTC in the form of MPC scheme by Takagi-Sugeno Fuzzy scheduler. The Fault tolerance is performed by switching the appropriate model for each identified faults. Thus by incorporating the fuzzy scheduled based FTC it becomes more efficient. The system will be thereafter able to detect the faults, isolate it and also able to accommodate the faults in the sensors and actuators of the Continuous Stirred Tank Reactor (CSTR) process while the conventional MPC does not have the ability to perform it.

A survey on cooperative fault-tolerant control for multiagent systems

  • Pu Zhang;Di Zhao;Xiangjie Kong;Jialong, Zhang;Lei Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1431-1448
    • /
    • 2024
  • Complexity science is a new stage in the development of systems science that is the frontier areas of contemporary scientific development. Complexity science takes complex systems as the research object, which has attracted widespread attention from researchers in the fields of economy, control, management, and society. In recent years, with the rapid development of science and technology and people's deepening understanding for the theory of complex systems, the systems are no longer an object with a single function, but the systems are composed of multiple individuals with autonomous capabilities through cooperative and cooperation, namely multi-agent system (MAS). Currently, MAS is one of the main models for studying such complex systems. The intelligent control is to break the traditional multi-agent fault-tolerant control (FTC) concept and produce a new type of compensation mechanism. In this paper, the applications of fault-tolerant control methods for MASs are presented, and a discussion is given about development and challenges in this field.

Satellite Attitude Control with a Modified Iterative Learning Law for the Decrease in the Effectiveness of the Actuator

  • Lee, Ho-Jin;Kim, You-Dan;Kim, Hee-Seob
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.87-97
    • /
    • 2010
  • A fault tolerant satellite attitude control scheme with a modified iterative learning law is proposed for dealing with actuator faults. The actuator fault is modeled to reflect the degradation of actuation effectiveness, and the solar array-induced disturbance is considered as an external disturbance. To estimate the magnitudes of the actuator fault and the external disturbance, a modified iterative learning law using only the information associated with the state error is applied. Stability analysis is performed to obtain the gain matrices of the modified iterative learning law using the Lyapunov theorem. The proposed fault tolerant control scheme is applied to the rest-to-rest maneuver of a large satellite system, and numerical simulations are performed to verify the performance of the proposed scheme.

Fault-Tolerant Controller Design for Vehicles Platooning

  • Yoon, Gyeong-Hwan;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1853-1856
    • /
    • 2003
  • This paper considers the problem of longitudinal control of a platoon of automotive vehicles on a straight lane of a highway and proposes control laws in the event of loss of communication between the lead vehicle and the other vehicles in the platoon. Since safety plays a key role in the development of an Automated Highway System, fault-tolerant control is vital. In this paper, we develop a control algorithm in vehicle platooning and prove that this control algorithm is stable for certain class of faults such as parameter uncertainties. The performance of the controller is demonstrated through a series of simulations incorporating various vehicles and AHS faults. Results of simulation shows that the vehicles have good performance in spite of simple automotive and AHS failure, such as actuator failure,that is to say, engine input failure, communication failure between lead vehicle and the another vehicles.

  • PDF

A Design of a Fault Tolerant Control System Using On-Line Learning Neural Networks (온라인 학습 신경망 조직을 이용한 내고장성 제어계의 설계)

  • Younghwan An
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1181-1192
    • /
    • 1998
  • This paper describes the performance of a full-authority neural network-based fault tolerant system within a flight control system. This fault tolerant flight control system integrates sensor and actuator failure detection, identification, and accommodation (SFDIA and AFDIA), The first task is achieved by incorporating a main neural network (MNN) and a set of n decentralized neural networks (DNNs) to create a system for achieving fault tolerant capabilities for a system with n sensors assumed to be without physical redundancy The second scheme implements the same main neural network integrated with three neural network controllers (NNCs). The function of NNCs is to regain equilibrium and to compensate for the pitching, rolling. and yawing moments induced by the failure. Particular emphasis is placed in this study toward achieving an efficient integration between SFDIA and AFDIA without degradation of performance in terms of false alarm rates and incorrect failure identification. The results of the simulation with different actuator and sensor failures are presented and discussed.

  • PDF