• Title/Summary/Keyword: Fault Frequency

Search Result 604, Processing Time 0.026 seconds

Effects of Fault Parameters on the Ground Motion Synthesized by the Stochastic Green Function Method (추계학적 그린함수법으로 합성된 지반운동에 대한 단층 파라미터의 영향)

  • Kim, Jung-Han;Seo, Jeong-Moon;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2012
  • In this study, the ground motion was synthesized using the finite fault model by the stochastic green function method, and the difference in the ground motions was evaluated by using various values of the source parameters. An earthquake with a moment magnitude of 6.5 was assumed for the example fault model. The distribution of the slip in the fault plane was calculated using the statistical data of the asperity area. The source parameters considered in this study were the location of the hypocenter in the fault plane and the ratio of the rupture to the shear wave velocity, the rise time, the corner frequency of the source spectrum, and a high frequency filter. The values of the parameters related to the stochastic element source model were adjusted for different tectonic regions, and the others were selected for several possible cases. The response spectra were constructed from the synthesized ground motion time history and compared with the different parameter values. The frequency range affected by each parameter and the differences of the spectral accelerations were evaluated.

Diagnosis of a Pump by Frequency Analysis of Operation Sound (펌프의 작동음 주파수 분석에 의한 진단)

  • 이신영;박순재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.137-142
    • /
    • 2003
  • A fundamental study for developing a system of fault diagnosis of a pump is performed by using neural network. The acoustic signals were obtained and converted to frequency domain for normal products and artificially deformed products. The signals were obtained in various driving frequencies in order to obtain many types of data from a limited number of pumps. The acoustic data in frequency domain were managed to multiples of real driving frequency with the aim of easy comparison. The neural network model used in this study was 3-layer type composed of input, hidden, and output layer. The normalized amplitudes at the multiples of real driving frequency were chosen as units of input layer, Various sets of teach signals made from original data by eliminating some random cases were used in the training. The average errors were approximately proportional to the number of untaught data. The results showed neural network trained by acoustic signals can be used as a simple method far a detection of machine malfunction or fault diagnosis.

  • PDF

Diagnosis of a Pump by Frequency Analysis of Operation Sound (펌프의 작동음 주파수 분석에 의한 진단)

  • Lee Sin-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.81-86
    • /
    • 2004
  • A fundamental study for developing a system of fault diagnosis of a pump is performed by using neural network. The acoustic signals were obtained and converted to frequency domain for normal products and artificially deformed products. The signals were obtained in various driving frequencies in order to obtain many types of data from a limited number of pumps. The acoustic data in frequency domain were managed to multiples of real driving frequency with the aim of easy comparison. The neural network model used in this study was 3-layer type composed of input, hidden, and output layer. The normalized amplitudes at the multiples of real driving frequency were chosen as units of input layer. Various sets of teach signals made from original data by eliminating some random cases were used in the training. The average errors were approximately proportional to the number of untaught data. The results showed neural network trained by acoustic signals can be used as a simple method for a detection of machine malfuction or fault diagnosis.

Study on Detection Technique for Outer-race Fault of the Ball Bearing in Rotary Machinery (회전기기 볼베어링의 외륜 결함 검출 기법 연구)

  • Jeoung, Rae-Hyuck;Lee, Byung-Gon;Lee, Doo-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.1-6
    • /
    • 2010
  • Ball bearings are one of main components that support the rotational shaft in high speed rotary machinery. So, it is very important to detect the incipient faults and fault growth of bearing since the damage and failure of bearing can cause a critical failures or accidents of machinery system. In the past, many researchers mainly performed to detect the bearing fault using traditional method such as wavelet, statistics, envelope etc in vibration signals. But study on the detection technique for bearing fault growth has a little been performed. In this paper, we verified the possibility for monitoring of fault growth and detection of fault size in bearing outer-race by using the envelope powerspectrum and probabilistic density function from measured vibration signals.

Arc Fault Circuit Interrupter Design for Electrical Fire Protection (전기화재 방지를 위한 아크고장전류 차단기 설계)

  • Ban, Gi-Jong;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.5
    • /
    • pp.220-225
    • /
    • 2006
  • Arc Fault Current is an electric discharge which is occurred in two opposite electrode. In this paper, AFCI(arc fault circuit interrupter) is designed for the interruption of arc fault current which is occurred in the local electric network. This arc is one of the main causes of electric fire. Arc fault in electrical network has the characteristics of low current, high impedance and high frequency. Conventional arc fault circuit interrupter does not have the arc current interrupt function. Hence, Arc current controller is designed for the interruption of arc fault current which has the modified arc characteristics.

A Study of Rotor Fault Detection for the Induction Motor Using Axial Leakage Magnetic Flux (축방향 누설자속 측정에 의한 유도전동기의 회전자 결함검출에 관한 연구)

  • Shin, Dae-Cheul;Kim, Young-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.132-137
    • /
    • 2006
  • The second part of paper related rotor failure is to evaluate that the axial magnetic flux measurement could be used as a tool of the condition monitoring system for the induction motor and to develope the diagnostic algorithm for the various fault in the electric motors. The magnetic leakage flux signal is captured by the flux coil located at the end of motor without the disturbance of the operation. And the signal is analyzed both time and frequency domain to detect the failure of the motor. Specific signature can be described in tin and frequency domain for each fault of the motor. The experimental test found that the rotor failures - broken rotor bar, broken end ing and rotor eccentricity, could be detected from the spectrum with high resolution. The method of detecting the rotor fault was found by analysing the specific frequency and the sideband of the rotor bar pass frequency from axial leakage flux spectrum. In addition the optimal flux coil and measuring equipment for the axial leakage flux measurement was verified and the diagnostic method for the detection of the rotor related failure was developed.

On the Detection of Induction-Motor Rotor Fault by the Combined “Time Synchronous Averaging-Discrete Wavelet Transform” Approach

  • Ngote, Nabil;Ouassaid, Mohammed;Guedira, Said;Cherkaoui, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2315-2325
    • /
    • 2015
  • Induction motors are widely used in industrial processes since they offer a very high degree of reliability. But like any other machine, they are vulnerable to faults, which if left unmonitored, might lead to an unexpected interruption at the industrial plant. Therefore, the condition monitoring of the induction motors have been a challenging topic for many electrical machine researchers. Indeed, the effectiveness of the fault diagnosis and prognosis techniques depends very much on the quality of the fault features selection. However, in induction-motor drives, rotor defects are the most complex in terms of detection since they interact with the supply frequency within a restricted band around this frequency, especially in the no-loaded case. To overcome this drawback, this paper deals with an efficient and new method to diagnose the induction-motor rotor fault based on the digital implementation of the monitoring algorithm based on the association of the Time Synchronous Averaging technique and Discrete Wavelet Transform. Experimental results are presented in order to show the effectiveness of the proposed method. The obtained results are largely satisfactory, indicating a promising industrial application of the combined “Time Synchronous Averaging – Discrete Wavelet Transform” approach.

Characteristics of the Switching Surge Voltages Induced at Metal Flexible Conduits Due to Ground Faults (지락고장에 의해 금속제 유연전선관에 유도된 개폐서지전압의 특성)

  • Lee, Bok-Hee;Shin, Gun-Jin;Park, Hee-Yeoul;Um, Sang-Hyun;Kim, You-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.74-80
    • /
    • 2013
  • This paper presents the transient behavior of the switching surge voltages generated by interruption of DC ground fault currents flowing through metal flexible conduits. All fault circuits consist of line parameters such as resistance, inductance, capacitance and conductance. The use of nonmagnetic metal conduits should be taken into account in order to reduce the inductance of battery charger distribution circuits. The frequency-dependent circuit parameters of metal flexible conduits were measured. The switching surge voltages generated at the ground fault circuit consisted of steel-galvanized alloy and aluminium conduits were investigated. As a result, the impedances of metal flexible conduits are significantly increased over the range of the frequency above 10 kHz and the switching surge voltages generated along aluminium flexible conduit are lower than those along steel-galvanized alloy conduit when DC fault current is interrupted.

A Study on Field Vibration for Fault Cause Analysis of Glass Insulator on High-speed Railway (고속철도 유리애자 파손원인을 위한 현장 진동 연구)

  • Kim, Young-Seok;Shong, Kil-Mok;Bang, Sun-Bae;Kim, Sun-Gu;Ryu, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.189-190
    • /
    • 2008
  • This study was investigated a possibility of fault of glass insulator due to vibration on high-speed railway. The proper vibration of 1-glass insulator have many frequency band and high amplitude showed in high frequency than low frequency. The proper vibration of strut tube insulator was lowest 170Hz, highest 1.5kHz. The field signal amplitude of viaduct and open route were biggest moment pantograph of high-speed rail. The surface vibration(V3) amplitude of strut tube insulator was biggest. From the FFT analysis of viaduct and open route, the strut tube insulator effect by vertical vibration was big, the frequency was 82.5Hz and 105Hz, respectively. However, in comparison with the proper vibration of strut tube insulator, the resonance was not observed. Although the amplitude of insulator is high, the possibility of fault is low because the glass insulator deterioration by the accumulation of vibration do not happen.

  • PDF

Higher-mode effects for soil-structure systems under different components of near-fault ground motions

  • Khoshnoudian, Faramarz;Ahmadi, Ehsan;Sohrabi, Sina;Kiani, Mahdi
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.83-99
    • /
    • 2014
  • This study is devoted to estimate higher-mode effects for multi-story structures with considering soil-structure interaction subjected to decomposed parts of near-fault ground motions. The soil beneath the super-structure is simulated based on the Cone model concept. Two-dimensional structural models of 5, 15, and 25-story shear buildings are idealized by using nonlinear stick models. The ratio of base shears for the soil-MDOF structure system to those obtained from the equivalent soil-SDOF structure system is selected as an estimator to quantify the higher-mode effects. The results demonstrate that the trend of higher-mode effects is regular for pulse component and has a descending variation with respect to the pulse period, whereas an erratic pattern is obtained for high-frequency component. Moreover, the effect of pulse component on higher modes is more significant than high-frequency part for very short-period pulses and as the pulse period increases this phenomenon becomes vice-versa. SSI mechanism increases the higher-mode effects for both pulse and high-frequency components and slenderizing the super-structure amplifies such effects. Furthermore, for low story ductility ranges, increasing nonlinearity level leads to intensify the higher-mode effects; however, for high story ductility, such effects mitigates.