Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.29
no.12
/
pp.8-14
/
2015
An effective way to ensure that LEDs produce wanted light output is to use a current driving topology, because the brightness of LEDs is directly related to their current. However, this topology may lead to the lifetime shortening of a illumination system because over-currents may flow through non-damaged LEDs in case some LEDs are damaged. This paper presents an adaptive current control circuits for LEDs, which protect LEDs in a good state by limiting the driving currents according to the number of damaged ones. The proposed control circuits consist of a simple constant-current driver and a micro-controller which monitors the voltage of LED array without any auxiliary current sensors for fault diagnosis. And the driving current is automatically controlled into 6-levels according to the number of failures.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.12
no.2
/
pp.157-157
/
1998
이 논문은 브리시리스 직류전동기의 구동 인버터의 실시간 데이터를 이용한 고장진단에 관한 것이다. 구동 인버터의 고장유형을 파악하여 주요 고장증세별로 분류하고, 고장결과를 예측하여 ASCL로 시뮬레이션함으로써 지식 베이스로 구성하였다. 구동 인버터에 대해 실시간으로 감시된 데이터는 전문가 시스템의 추론기관에서 시뮬레이션된 지식베이스와 비교하게 된다. 고장이 발생하면, 운전을 중지시킨 후, 전문가 추론을 함으로써 고장원인을 진단한다. 이로써 구동 인버터에 대해 전문적인 지식을 갖고 있지 않는 사용자에게, 고장원인 제거 및 수리대책에 관한 전문가의 지식을 신속히 제공하는 것이다.
철도차량에 취부되는 추진장치는 차량의 성능을 결정하는 매우 중요한 요소이다. 이러한 추진장치에 대한 다양한 성능을 평가하고 진단하기 위해 상시계측시스템을 구축하여 활용하고 있다. 이러한 계측장비들은 추진장치에 대한 계측 및 분석을 통한 시험을 평가하고 완성차 시험이나 본선시운전 시험시에 발생할 수 있는 고장원인을 찾아내고 해결하는데 많은 도움을 주고 있다 본 논문에서는 한국형 고속전철차량에 설치되어있는 상시계측시스템을 통해 추진장치에 대한 고장진단을 실시한 내용에 대하여 기술하였다.
As the modern industrial processes become more complex, it is getting more difficult to model and control the processes. Naturally, an advanced type of DCS(Distributed Control System) with higher level functions is being sought Advanced DCS is a DCS with advanced functions such as fault diagnosis, GPC(Generalized Predictive Control), NN(Neural Network), and Fuzzy Control. In this thesis, we have studied a fuzzy control algorithm for realizing an advanced DCS. Its algorithm is implemented in a form of function code which is a process control language, being used by the industrial engineers. To verify the realized function code of the fuzzy control, the function code is applied to a continuous casting process of the Pohang Iron & Steel Works in Kwangyang. The rules of the fuzzy control were collected via interviews of the field operators and their operation documents. Finally, usability of the function code of the fuzzy control is shown via simulation for the continuous casting process model.
Proceedings of the Safety Management and Science Conference
/
1999.11a
/
pp.109-121
/
1999
플랜트 및 설비가 대규모, 정교화, 복잡화 될수록 이로 인한 고장 및 오류에 의한 피해가 막대하기 때문에, 시스템의 신뢰성, 보전성 및 안전성 향상과 제품 품질 향상을 추구 및 안전성 유지에 대한 관심이 고조되고 있다. 고장진단은 잠재적으로 노이즈를 가지고 있다고 생각되는 데이터의 해석에 근거하여 시스템의 고장을 찾는 일련의 체계적이고 통합된 방법이다. 그러나 대부분의 방법들이 이진 논리에 기초를 둔 추론으로 불확실성을 제대로 결과에 반영하지 못하고 있다. 본 논문에서는 예방정비의 관점에서 시스템에 내재된 다양한 불확실성을 효율적으로 처리하기 위해 전문가의 직관과 경험등을 기초로 하여 언어학적 변량을 취하고, 이를 퍼지 기법을 이용하여 정량화 함으로써 불확실성을 고려한 판단이 가능하게 하는 퍼지 전문가 시스템을 제안한다.
반도체 제조 공정의 진단 및 고장 예측 시스템을 개발하기 위해 PCA(Principal Component Analysis) 기법을 적용하여 데이터 분석을 하고자 하며, 이에 대한 이론적인 연구와 연구 수행 절차를 구체적으로 정립하였다. 비쥬얼 C++에서 MATLAB과 PLS_Toolbox 등을 연동하여 직관적이고 시각적이며 사용자가 효율적으로 공정 현장에 적용할 수 있는 시스템을 개발하고자 한다. 지금까지 PCA와 관련한 다양한 문헌 조사를 수행하였고, 이론적인 연구를 하였다. 비쥬얼 C++ 프로그램에서 MATLAB과 PLS_Toolbox 등을 연동하기 위해 필요한 환경 선정 등을 완료하였으며, 초기 단계의 간단한 모듈들을 개발하였다. 다음 단계의 모듈들은 좀 더 빠른 시간에 개발할 수 있을 것으로 기대한다. 이를 공정 현장에서 수집한 다양한 데이터에 적용하여 그 결과를 피드백하여 시스템을 수정하고 보완하고자 하며, 마지막으로 현장에 적용하고자 한다.
Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
/
2001.06a
/
pp.30-35
/
2001
The morphological analysis of wear particle is a very effective means for machine condition monitoring and fault diagnosis. In order to describe morphology of various wear particle, the wear test was carried oui under friction experimental conditions. And fractal descriptors was applied to boundary and surface of wear particle with image processing system. These descriptors to analyze shape and surface wear particle are share fractal dimension and surface fractal dimension. The boundry fractal dimension can be derived from the boundary profile and surface fractal dimension can be determined b)r sum of intensity difference of surface pixel. The morphology of wear particles can be effectively obtained by two fractal dimensions.
Proceedings of the Korean Information Science Society Conference
/
2007.10b
/
pp.120-124
/
2007
RFID(Radio Frequency Identification) 시스템은 다양한 분야에서 혁신을 제공하는 기술로써 관심의 대상이 되고 있으며 여러 분야에서 RFID 기술을 도일하기 위해 연구되고 있다. 특히 많은 사업 분야에서 RFID 기술을 이용하기 위해 연구가 이루어지고 있다. RFID 시스템의 특성상 다양한 도메인에서 이용되기 때문에 여러 가지 장애가 발생하게 된다. 하지만 이렇게 발생한 다양한 장애들을 탐지하고 진단하는 일은 쉽지 않다. 본 논문에서는 다양한 도메인에서 이용되는 RFID 미들웨어 시스템의 특성을 고려하여 RFID 미들웨어 시스템에 적합한 장애 탐지 기법과 장애 진단 기법을 제시한다.
최근 산업의 핵심 에너지원을 공급하고 있는 전력회사의 운영에서, 계통 사고시 대량의 경보 신호 발생으로 인하여 운전원의 혼란을 가져오게 되어, 사고후 복구시간의 지연을 초래하는 문제로 인한 해당산업체의 손실이 대형화하는 추세이다. 본 논문에서는 이와 같은 문제를 해결하는 방안으로 사고시 보호시스템의 순차정보를 이용하여 단시간에 고장진단을 수행함으로서, 고장의 원인 파악과 정확한 고장발생지점 정보를 운전원에게 제공할 수 있는 방법을 제안하고 있다. 고장진단 기법은 고장 발생의 불확실성을 고려한 보호시스템의 모델링 방법과 퍼지 페트리네트 기법을 개발하여 적용하였다. 본 연구에서 개발한 방법을 사례연구를 통하여 모델 계통에 적응하고 그 유효성 여부를 확인한 결과 만족할 만한 성과를 얻을 수 있었다. 특히 보호시스템의 오동작이나 부동작 둥의 불확실한 정보를 처리하는 데 본 연구에서 개발한 퍼지 페트리네트 기법이 탁월한 성능을 발휘하므로 실제의 대형 전력계통에 적용 가능성을 확인할 수 있었다. 또한 본 방법은 SCADA로부터 전송되는 실시간 데이터의 온라인 처리도 가능하므로 그 유용성은 아주 높다고 볼 수 있다.
Journal of Korea Society of Digital Industry and Information Management
/
v.15
no.2
/
pp.19-28
/
2019
The purpose of this study is to examine the trends on machine learning and deep learning research in the published journals from the Web of Science Database. To achieve the study purpose, we used the abstracts of 20,664 articles published between 1990 and 2017, which include the word 'machine learning', 'deep learning', and 'artificial neural network' in their titles. Twenty major research topics were identified from topic modeling analysis and they were inclusive of classification accuracy, machine learning, optimization problem, time series model, temperature flow, engine variable, neuron layer, spectrum sample, image feature, strength property, extreme machine learning, control system, energy power, cancer patient, descriptor compound, fault diagnosis, soil map, concentration removal, protein gene, and job problem. The analysis of the time-series linear regression showed that all identified topics in machine learning research were 'hot' ones.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.