• Title/Summary/Keyword: Fault Diagnosis Control

Search Result 330, Processing Time 0.028 seconds

Detection of Oscillatory Pattern Signals and its Application to the Fault Diagnosis of a Boiler Drum-Level Control System (Oscillatory 파형감지에 의한 보일러 플랜트 드럼수위 제어계통의 고장진단)

  • Kim, Jae-Hwa;Seo, Yeol-Kyu;Jang, Tae-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.44-51
    • /
    • 1999
  • This paper proposes a new approach of plant fault diagnosis which is based on detecting the characteristic pattern signals and associating them with the corresponding faults. The new approach does not require analytic modeling of the target system but best reflects the expertise embedded in the experienced human operation by mimicking them in a systematic way. This paper intends to illustrate the feasibility of the proposed by developing the algorithms to detect and estimate the typical characteristic pattern signals, I. e., oscillatory patterns, and applying them to the diagnosis of various faults of a 500MW boiler control system including tube rupture, feed-water leak, and controller failure.

  • PDF

Fault Tolerant Controller Design for Linear Stochastic Systems with Uncertainties (불확실성을 갖는 선형 확률적 시스템에 대한 고장허용제어기 설계)

  • Lee, Jong-Hyo;Yoo, Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.107-116
    • /
    • 2003
  • This paper presents a systematic design methodology for fault tolerant controller against a fault in actuators and sensors of linear stochastic systems with uncertainties. The scheme is based on fault detection and diagnosis(isolation and estimation) using a bank of robust two-stage Kalman filters, and accommodation of the actuator fault by eigenstructure assignment and immediate compensation of the sensor's faulty measurement. In order to clarify the fault feature in test statistics of residual, noise reduction method is given by multi-scale discrete wavelet transform. The effectiveness of our approach Is shown via simulations for a VTOL(vertical take-off and landing) aircraft subjected to parameter variations, external disturbances, process and sensor noises.

A Study on a Fault Detection and Isolation Method of Nonlinear Systems using SVM and Neural Network (SVM과 신경회로망을 이용한 비선형시스템의 고장감지와 분류방법 연구)

  • Lee, In-Soo;Cho, Jung-Hwan;Seo, Hae-Moon;Nam, Yoon-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.540-545
    • /
    • 2012
  • In this paper, we propose a fault diagnosis method using artificial neural network and SVM (Support Vector Machine) to detect and isolate faults in the nonlinear systems. The proposed algorithm consists of two main parts: fault detection through threshold testing using a artificial neural network and fault isolation by SVM fault classifier. In the proposed method a fault is detected when the errors between the actual system output and the artificial neural network nominal system output cross a predetermined threshold. Once a fault in the nonlinear system is detected the SVM fault classifier isolates the fault. The computer simulation results demonstrate the effectiveness of the proposed SVM and artificial neural network based fault diagnosis method.

Fault Detection and Diagnosis of an Agitator Using the Wavelet Transform (웨이브렛 변환을 이용한 교반기의 고장감지 및 진단)

  • 서동욱;전도영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.851-855
    • /
    • 2002
  • This paper proposes a method of fault detection and diagnosis of agitators based on the wavelet analysis of the current and vibration signals. The wavelet transform has received considerable interest in the fields of acoustics, communication, image compression, vision. and seismic since it provides the fast and effective means of analyzing signals recorded during operation. Neural network is used to diagnose the fault. Specifically, the proposed approach consists of (i) fault detection, (ii) feature extraction, and (iii) classification of fault types. The results show an effective application of the wavelet analysis on the monitoring of an agitator.

Review of expert system applications to chemical process fault diagnosis (화학공정 결함진단을 위한 전문가 시스템 적용에 관한 고찰)

  • 오전근;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.674-679
    • /
    • 1987
  • Process failures can occur at any time during operation, so a continuous effort of fault detection, diagsis, and correction is required. Expert system paridigm has been regarded as a promising approach to real time process supervisory control especially to fault diagnosis. The most important aspects of fault diagnostic expert systems(FDES) are the problem-solving inference strategy and knowledge organizations. The necessity of FDES, the nature of diagnostic knowledge, the representation of knowledge, and the inference mechanism of FDES, et al. are described, which are announced by previous researchers. And the existing FDES are categorized and critically reviewed in this work.

  • PDF

A Study on Fault Detection and Fault Device Estimation Method for Cab Cubicle in High Speed Electrical Train (고속전철용 Cab Cubicle의 이상검출과 고장부위 추정에 관한 연구)

  • 장영건;조경환;박계서;최권희
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.188-194
    • /
    • 2000
  • This study is about fault detection and fault area detection of LV circuit in Cab Cubicle system which have control of train to keep safety in High Speed Train. LV circuit is operated with diagnosis system like safety system. In this paper, we suggest a design and an implementation method to detect fault or to detect fault area automatically about LV circuit. The implemented system is tested successfully after implementation of some function. We expect reduction to diagnosis area or repair time by fault area module

  • PDF

Diagnosis of Linear Systems with Structured Uncertainties based on Guaranteed State Observation

  • Planchon, Philippe;Lunze, Jan
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.306-319
    • /
    • 2008
  • Reaching fault tolerance in technological systems requires to detect malfunctions. This paper presents a diagnostic method that is robust with respect to unknown-but-bounded uncertainties of the dynamical model and the measurements. By using models of the faultless and the faulty behaviours, a state-set observer computes polyhedral sets from which the consistency of the models with the interval measurements is determined. The diagnostic result is proven to be complete, i.e., the set of faults obtained by the diagnostic algorithm includes the actual fault. The algorithm is illustrated by an application example.

Fault Diagnosis for Electric Chassis System

  • Ryu, Seong-Pil;Kwak, Byung-Hak;Park, Young-Jin;Jung, Hun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.116.1-116
    • /
    • 2001
  • In the near future, drive-by-wire systems will replace mechanical systems of vehicles. Since there would be no mechanical redundancy in the x-by-wire subsystem, it needs to improve the reliability of the system using fault diagnosis of sensors and actuators. This paper proposes a Kalman filter based fault diagnosis method for the vehicle with the drive-by-wire system, which includes steer-by-wire, brake-by-wire and throttle-by-wire systems. We will show that the proposed method is successful in fault detection and isolation for single sensor/actuator faults of the vehicle system.

  • PDF

Principal Component Analysis Based Method for a Fault Diagnosis Model DAMADICS Process (주성분 분석을 이용한 DAMADICS 공정의 이상진단 모델 개발)

  • Park, Jae Yeon;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.35-41
    • /
    • 2016
  • In order to guarantee the process safety and prevent accidents, the deviations from normal operating conditions should be monitored and their root causes have to be identified as soon as possible. The statistical theories-based method among various fault diagnosis methods has been gaining popularity, due to simplicity and quickness. However, according to fault magnitudes, the scalar value generated by statistical methods can be changed and this point can lead to produce wrong information. To solve this difficulty, this work employs PCA (Principal Component Analysis) based method with qualitative information. In the case study of our previous study, the number of assumed faults is much smaller than that of process variables. In the case study of this study, the number of predefined faults is 19, while that of process variables is 6. It means that a fault diagnosis becomes more difficult and it is really hard to isolate a single fault with a small number of variables. The PCA model is constructed under normal operation data in order to get a loading vector and the data set of assumed faulty conditions is applied with PCA model. The significant changes on PC (Principal Components) axes are monitored with CUSUM (Cumulative Sum Control Chart) and recorded to make the information, which can be used to identify the types of fault.

Fault Detection and Diagnosis of CAN-Based Distributed Systems for Longitudinal Control of All-Terrain Vehicle(ATV) (무인 ATV의 종 방향 제어를 위한 CAN 기반 분산형 시스템의 고장감지 및 진단)

  • Kim, Soon-Tae;Song, Bong-Sob;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.983-990
    • /
    • 2008
  • This paper presents the fault detection and diagnosis(FDD) algorithm to enhance reliability of a longitudinal controller for an autonomous All-Terrain Vehicle(ATV). The FDD is designed to monitor and identify faults which may occur in distributed hardware used for longitudinal control, e.g., DSPs, CAN, sensors, and actuators. The proposed FDD is an integrated approach of decentralized and centralized FDD. While the former is processed in a DSP and suitable to detect faults in a single hardware, it is sensitive to noise and disturbance. On the other hand, the latter is performed via communication and it detects and diagnoses faults through analyzing concurrent performances of multiple hardware modules, but it is limited to isolate faults specifically in terms of components in the single hardware. To compensate for disadvantages of each FDD approach, two layered structure including both decentralized and centralized FDD is proposed and it allows us to make more robust fault detection and more specific fault isolation. The effectiveness of the proposed method will be validated experimentally.