• Title/Summary/Keyword: Fault Diagnosis Control

Search Result 331, Processing Time 0.034 seconds

Fuzzy Petri-net Approach to Fault Diagnosis in Power Systems Using the Time Sequence Information of Protection System

  • Roh, Myong-Gyun;Hong, Sang-Eun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1727-1731
    • /
    • 2003
  • In this paper we proposed backward fuzzy Petri-net to diagnoses faults in power systems by using the time sequence information of protection system. As the complexity of power systems increases, especially in the case of multiple faults or incorrect operation of protective devices, fault diagnosis requires new and systematic methods to the reasoning process, which improves both its accuracy and its efficiency. The fuzzy Petri-net models of protection system are composed of the operating process of protective devices and the fault diagnosis process. Fault diagnosis model, which makes use of the nature of fuzzy Petri-net, is developed to overcome the drawbacks of methods that depend on operator knowledge. The proposed method can reduce processing time and increase accuracy when compared with the traditional methods. And also this method covers online processing of real-time data from SCADA (Supervisory Control and Data Acquisition)

  • PDF

A Study on the Fault Diagnosis of Roll-shape and Fault Tolerant Tension Control in a Continuous Process Systems (롤 형상 이상진단 및 이상극복 장력제어에 관한 연구)

  • 이창우;신기현;강현규;김광용;최승갑;박철재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.963-968
    • /
    • 2003
  • The continuous process systems usually consists of various components: driven rollers. idle rolls, load-cell and so on. Even a simple fault in a single component in the line may cause a catastrophic damage on the final products. Therefore it is absolutely necessary to diagnosis the components of the continuous systems. In this paper, an adaptive eccentricity compensation method is presented. And a new diagnosis method for transverse roll shape defects on rolling process is developed. The new method was induced from analyzing the rolling mechanism by using rolling force model, tension model, Hitchcock's equation, and measured delivery thickness of materials etc. Computer simulation results also show that the proposed diagnosis methods is very effective in the diagnosis of 3-D roll shape

  • PDF

Fault Detection and Diagnosis based on Fuzzy Algorithm in the Injection Molding Machine Barrel Temperature (사출 성형기 Barrel 온도에 관한 퍼지알고리즘 기반의 고장 검출 및 진단)

  • 김훈모
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.958-962
    • /
    • 2003
  • We acquired data of injection molding machine in operation and stored the data in database. We acquired the data of injection molding machine for fault detection and diagnosis (FDD) continuously and estimated the fault results with a fuzzy algorithm. Many of FDD are applied to a huge system, nuclear power plant and a computer numerical control(CNC) machine for processing machinery. But, the research of FDD is rare in injection molding machine compare with computer numerical control machine. We appraise the accuracy of the FDD and the limit of the application to the injection molding machine. We construct the fault detection and diagnosis system based on fuzzy algorithm in the injection molding machine. Data of operating injection molding machine are acquired in order to improve the reliability of detection and diagnosis.

Fault Detection and Diagnosis of the Deaerator Level Control System in Nuclear Power Plants

  • Kim Kyung Youn;Lee Yoon Joon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.73-82
    • /
    • 2004
  • The deaerator of a power plant is one of feedwater heaters in the secondary system, and it is located above the feedwater pumps. The feedwater pumps take the water from the deaerator storage tank, and the net positive suction head(NSPH) should always be ensured. To secure the sufficient NPSH, the deaerator tank is equipped with the level control system of which level sensors are critical items. And it is necessary to ascertain the sensor state on-line. For this, a model-based fault detection and diagnosis(FDD) is introduced in this study. The dynamic control model is formulated from the relation of input-output flow rates and liquid-level of the deaerator storage tank. Then an adaptive state estimator is designed for the fault detection and diagnosis of sensors. The performance and effectiveness of the proposed FDD scheme are evaluated by applying the operation data of Yonggwang Units 3 & 4.

A Diagnosis Scheme of Switching Devices under Open Fault in Inverter-Fed Interior Permanent Magnet Synchronous Motor Drive (매입형 영구자석 동기전동기 구동용 인버터 스위칭 소자의 개방 고장 진단)

  • Choi, Dong-Uk;Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.61-68
    • /
    • 2012
  • This paper deals with a fault diagnosis algorithm for open faults in the switching devices of PWM inverter-fed IPMSM (Interior Permanent Magnet Synchronous Motor) drive. The proposed diagnostic algorithm is realized in the controller using the informations of three-phase currents or reference line-to-line voltages, without requiring additional equipments for fault detection. Under switch open fault conditions, the conventional dq model used to control an AC motor cannot directly be applied for the analysis of drive system, since three-phase balanced condition does not hold. To overcome this limitation, a fault model based on the line-to-line voltages is employed for the simulation studies. For comparative performance evaluation through the experiments, the entire control system is implemented using digital signal processor (DSP) TMS320F28335. Simulations and experimental results are presented to verify the validity of the proposed diagnosis algorithm.

A study in fault detection and diagnosis of induction motor by clustering and fuzzy fault tree (클러스터링과 fuzzy fault tree를 이용한 유도전동기 고장 검출과 진단에 관한 연구)

  • Lee, Seong-Hwan;Shin, Hyeon-Ik;Kang, Sin-Jun;Woo, Cheon-Hui;Woo, Gwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.123-133
    • /
    • 1998
  • In this paper, an algorithm of fault detection and diagnosis during operation of induction motors under the condition of various loads and rates is investigated. For this purpose, the spectrum pattern of input currents is used in monitoring the state of induction motors, and by clustering the spectrum pattern of input currents, the newly occurrence of spectrum patterns caused by faults are detected. For the diagnosis of the fault detected, a fuzzy fault tree is designed, and the fuzzy relation equation representing the relation between an induction motor fault and each fault type, is solved. The solution of the fuzzy relation equation shows the possibility of occurence of each fault. The results obtained are summarized as follows : (1) Using clustering algorithm by unsupervised learning, an on-line fault detection method unaffected by the characteristics of loads and rates is implemented, and the degree of dependency for experts during fault detection is reduced. (2) With the fuzzy fault tree, the fault diagnosis process become systematic and expandable to the whole system, and the diagnosis for sub-systems can be made as an object-oriented module.

  • PDF

Fault Feature Clarification in the Residual for Fault Detection and Diagnosis of Control Systems

  • Lee, Jonghyo;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.96.3-96
    • /
    • 2002
  • A scheme of clarifying fault feature in the residual is given for model-based fault detection and diagnosis of control systems. It is based on the residual generation using a robust filter and the noise suppresion in test statistics of the residual by multi-scale discrete wavelet transform. By clarifying the fault feature in the residual, the difficulties of existing model based approaches via adopting a threshold can be overcomed and it has advantage of taking the false alarm and missed detection into acount at the same time, which can make the fault detection and diagnosis easy and correct. To show the effectiveness of our approach, the simulation results are illustrated for a linear syste...

  • PDF

Fault Diagnosis for Parameter Change Fault

  • Suzuki, Keita;Fujii, Takao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2183-2187
    • /
    • 2005
  • In this paper we propose a new fault detection and isolation (FDI) method for those faults of parameter change type. First, we design a residual generator based on the ${\delta}$-operator model of the plant by using the stable pseudo inverse system. Second, the parameter change is estimated by using the property of the block Hankel operator. Third, reliability with respect to stability is quantified. Fourth, the limitations for the meaningful diagnosis in our method are given. The numerical examples demonstrate the effectiveness of the proposed method.

  • PDF

A fault diagnosis method using an artificial neural network (인공 신경망을 이용한 공정고장 진단방법)

  • 이상규;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.339-343
    • /
    • 1990
  • This paper describes a neural-network-based methodology for providing a potential solution in the area of process fault diagnosis. The existing neural network for fault diagnosis learn fault node by using pairs of single-symptom-single-cause only. But in real plants, the effect of a fault propagates continuously from it's origin; different sensor values reflect this. In this paper, we suggest a new method which can handle the effect of symptom propagation. The proposed method can find the exact origin of the fault of which the symptom is propagated continuously with time.

  • PDF

SEMISUPERVISED CLASSIFICATION FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANTS

  • MA, JIANPING;JIANG, JIN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.176-186
    • /
    • 2015
  • Pattern classifications have become important tools for fault diagnosis in nuclear power plants (NPP). However, it is often difficult to obtain training data under fault conditions to train a supervised classification model. By contrast, normal plant operating data can be easily made available through increased deployment of supervisory, control, and data acquisition systems. Such data can also be used to train classification models to improve the performance of fault diagnosis scheme. In this paper, a fault diagnosis scheme based on semisupervised classification (SSC) scheme is developed. In this scheme, new measurements collected from the plant are integrated with data observed under fault conditions to train the SSC models. The trained models are subsequently applied to new measurements for fault diagnosis. In comparison with supervised classifiers, the proposed scheme requires significantly fewer data collected under fault conditions to train the classifier. The developed scheme has been validated using different fault scenarios on a desktop NPP simulator as well as on a physical NPP simulator using a graph-based SSC algorithm. All the considered faults have been successfully diagnosed. The results have demonstrated that SSC is a promising tool for fault diagnosis in NPPs.