• Title/Summary/Keyword: Fatty Acid Profile

Search Result 343, Processing Time 0.022 seconds

Effect of dietary betaine on short chain fatty acid and blood profile in meat duck exposed to extreme heat stress (베타인이 폭염 오리의 짧은 사슬지방산 및 혈액 프로파일에 미치는 효과)

  • Hwangbo, Jong;Bang, Han-Tae;Park, Byung-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.394-404
    • /
    • 2015
  • This study investigated the pharmacodynamics of betaine on the blood profile and short chain fatty acid levels in meat ducks exposed to heat wave. 400 heads of Cherry valley (Anasplatyrhynchos) meat ducks were completely randomized to 5 treatments (4 repetitions each), and were raised for 42 days. They were grouped into T1 (heat wave control group without betaine), T2 (betaine 400 ppm), T3 (betaine 800 ppm), T4 (betaine 1200 ppm), and T5 (normal control group without betaine). Compared to T1, the betaine addition groups showed higher body weight gain at shipment, with T3 showing the highest significant difference. For hematological indictors measured (red blood cells and platelets), the betaine addition groups showed significantly higher values than the heat wave control group. The pH of the former was lower but their electrolytes ($K^+$, $P^+$, and $Cl^-$) were significantly higher compared to the latter. For blood gas concentration, the former showed a significantly higher value than the latter. For the total short chain fatty acids, acetic acid, and propionic acid, the betaine addition groups and group fed broiler-high temperature diet showed higher values than the heat wave control group. On the other hand, the former showed significantly lower values in butyric acid, isobutyric acid, valeric acid, and isovaleric acid than the latter group. These results suggest that betaine has the pharmacodynamics that mediate heat stress, via the maintenance and control of the blood profile, osmotic pressure, gas concentration, and short chain fatty acid, of meat ducks under heat wave.

Lipid Sources with Different Fatty Acid Profile Alters the Fatty Acid Profile and Quality of Beef from Confined Nellore Steers

  • Fiorentini, Giovani;Lage, Josiane F.;Carvalho, Isabela P.C.;Messana, Juliana D.;Canesin, Roberta. C.;Reis, Ricardo A.;Berchielli, Telma T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.7
    • /
    • pp.976-986
    • /
    • 2015
  • The present study was conducted to determine the effects of lipid sources with different fatty acids profile on meat fatty acids profile and beef quality traits of Nellore. A total of 45 Nellore animals with an average initial body weight of $419{\pm}11kg$ (at $15{\pm}2mo$) were distributed in a completely randomized design consisting of 5 treatments and 9 replicates. The roughage feed was maize silage (600 g/kg on a dry matter [DM] basis) plus concentrate (400 g/kg on a DM basis). The dietary treatments were as follows: without fat (WF), palm oil (PO), linseed oil (LO), protected fat (PF), and soybean grains (SG). No effects of lipid sources were observed (p>0.05) on beef color, pH, water-holding capacity, and sarcomere length. Beef from cattle fed PO had greater shear-force values (p<0.05) compared to beef from cattle fed WF. Deposition of main unsaturated fatty acids (oleic, linoleic, and linolenic) was greater in treatments WF, SG, and LO, respectively, while the values of conjugated linoleic acid (CLA) were greater when animals were fed LO. The inclusion of LO in the diet enhances the concentration of CLA in longissimus muscle and subcutaneous fat besides improving the atherogenicity index and elongase activity. As such, LO can be used with the aim to improve the quality of beef from confined Nellore cattle. Conversely, the use of PO is not recommended since it may increase the concentration of undesirable unsaturated fatty acids in muscle and subcutaneous fat, shear-force and the atherogenicity index.

Rubber seed oil and flaxseed oil supplementation on serum fatty acid profile, oxidation stability of serum and milk, and immune function of dairy cows

  • Pi, Yu;Ma, Lu;Wang, Hongrong;Wang, Jiaqi;Xu, Jianchu;Bu, Dengpan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1363-1372
    • /
    • 2019
  • Objective: This study was designed to investigate the effect of diet supplementation with rubber seed oil and flaxseed oil on serum fatty acids profile, oxidation stability of serum and milk, and immune function of dairy cows. Methods: Forty-eight mid-lactation Holstein dairy cows were randomly assigned to one of four treatments for 8 wk, including basal diet (CON) or the basal diet supplemented with 4% rubber seed oil (RO), 4% flaxseed oil (FO) or 2% rubber seed oil plus 2% flaxseed oil (RFO) on a dry matter basis. Results: Compared with CON, all the oil groups increased the levels of trans-11 C18:1 (vaccenic acid), cis-9, trans-11 C18:2 (conjugated linoleic acid, CLA) and C18:3 (${\alpha}$-linolenic acid, ALA) in serum. Both the activity of glutathione peroxidase and catalase in serum and milk in oil groups were decreased, which were negatively correlated with the levels of cis-9, trans-11 CLA and ALA. The concentrations of proinflammatory factors (tumor necrosis factor ${\alpha}$ and interferon ${\gamma}$) in serum of oil groups were lower than that from the CON cows. Conclusion: These results indicate that diet supplementation with RO or FO could alter serum fatty acid profile and enhance the immune function of dairy cows. However, the negative effect on milk oxidation stability should be considered when feeding these n-3 polyunsaturated fatty acid-enriched oils in dairy production.

Dietary Fatty Acid Increases Body Weight Gain without a Change in Rumen Fermentation in Fattening Cattle

  • Kita, K.;Oka, M.;Yokota, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.39-43
    • /
    • 2003
  • Dietary fatty acid including mainly palmitic acid and stearic acid was fed to fattening cattle and its effect on body weight gain, plasma lipid contents and rumen liquid fermentation in vitro was examined. In expt. 1, the effect of dietary fatty acid on body weight gain and plasma lipid concentrations was examined. In the control diet group, cattle were fed 1 kg/day of rice straw and concentrate which satisfied the requirement. In the fatty acid group, cattle were given 250 g/d of fatty acid with the same diet of the control diet group. In the excess concentrate group, cattle were given the same diet of the control diet group plus 735 g/d of concentrate corresponding to the same TDN of 250 g/d of fatty acid. Diets were given for 7 days. Body weight gain of cattle given dietary fatty acid was significantly greater than that of cattle fed only rice straw and concentrate. When dietary fatty acid was added to cattle feed, plasma NEFA and HDL-cholesterol concentrations increased. In expt. 2, the influence of dietary fatty acid on gas production and VFA profile in the rumen liquid was investigated in vitro. In the control group, 10 mg of rice straw and 90 mg of concentrate were incubated in the rumen fluid. In the excess concentrate group, 10 mg of rice straw and 97.5 mg of concentrate were incubated. In the fatty acid group, 10 mg of rice straw, 90 mg of concentrate and 2.5 mg of fatty acids were incubated. The rumen liquid mixed with feed materials was incubated for 24 h and the cumulative gas volume was measured. The VFA profile was also measured. Cumulative gas volume in the rumen liquid with fatty acid was equal to the control. Excess concentrate increased cumulative gas volume compared to the fatty acid group. There was no significant difference in total VFA concentration between experimental diet groups. It is suggested that dietary fatty acid has the potency to improve growth performance in fattening cattle without failure in rumen fermentation.

Influence of Sunflower Whole Seeds or Oil on Ruminal Fermentation, Milk Production, Composition, and Fatty Acid Profile in Lactating Goats

  • Morsy, T.A.;Kholif, S.M.;Kholif, A.E.;Matloup, O.H.;Salem, A.Z.M.;Elella, A. Abu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1116-1122
    • /
    • 2015
  • This study aimed to investigate the effect of sunflower seeds, either as whole or as oil, on rumen fermentation, milk production, milk composition and fatty acids profile in dairy goats. Fifteen lactating Damascus goats were divided randomly into three groups (n = 5) fed a basal diet of concentrate feed mixture and fresh Trifolium alexandrinum at 50:50 on dry matter basis (Control) in addition to 50 g/head/d sunflower seeds whole (SS) or 20 mL/head/d sunflower seeds oil (SO) in a complete randomized design. Milk was sampled every two weeks during 90 days of experimental period for chemical analysis and rumen was sampled at 30, 60, and 90 days of the experiment for ruminal pH, volatile fatty acids (tVFA), and ammonia-N determination. Addition of SO decreased (p = 0.017) ruminal pH, whereas SO and SS increased tVFA (p<0.001) and acetate (p = 0.034) concentrations. Serum glucose increased (p = 0.013) in SO and SS goats vs Control. The SO and SS treated goats had improved milk yield (p = 0.007) and milk fat content (p = 0.002). Moreover, SO increased milk lactose content (p = 0.048) and feed efficiency (p = 0.046) compared to Control. Both of SS and SO increased (p<0.05) milk unsaturated fatty acids content specially conjugated linolenic acid (CLA) vs Control. Addition of SS and SO increased (p = 0. 021) C18:3N3 fatty acid compared to Control diet. Data suggested that addition of either SS or SO to lactating goats ration had beneficial effects on milk yield and milk composition with enhancing milk content of healthy fatty acids (CLA and omega 3), without detrimental effects on animal performance.

The Effects of Genetic Groups, Nutrition, Finishing Systems and Gender of Brazilian Cattle on Carcass Characteristics and Beef Composition and Appearance: A Review

  • Pizzi Rotta, Polyana;do Prado, Rodolpho Martin;do Prado, Ivanor Nunes;Valero, Maribel Velandia;Visentainer, Jesui Vergilio;Silva, Roberio Rodrigues
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.12
    • /
    • pp.1718-1734
    • /
    • 2009
  • The aim of this review is to address some characteristics that influence meat quality. Genetic groups, nutrition, finishing systems and gender are the major factors that change carcass characteristics, chemical composition and fatty acid profile. Genetic groups that have zebu genes in their composition show higher hot carcass dressing than genetic groups without zebu genes. Genetic groups that have European breeds in their composition have higher marbling scores. On the other hand, genetic groups that have zebu breeds show low marbling scores. Bulls finished in feedlots present higher final weight than steers, cull cows and heifers. Fat thickness is one of the principal parameters that are affected by different gender. Cull cows (4.72 mm) and heifers (4.00 mm) present higher values than bulls (1.75 mm) and steers (2.81 mm). The major effects observed by different systems of termination are fat thickness and marbling. Crude protein presents variation due to nutrition. Nutrition influences variation of fatty acid profile. Genetic groups also influence fatty acid profile. Genetic groups that have zebu genes in their composition show high percentage of PUFA. The major class of fatty acids that is changed with nutrition is PUFA. The better ratios of PUFA/SFA and n-6/n-3 are found in Longissimus muscle of animals finished in pasture systems.

Effect of Quality and Quantity of Dietary Fats on the Status of Tocopherol and Lipid Peroxidation of Plasma and Tissue in Rats (식이지방의 종류와 수준에 따라 쥐의 혈장과 조직의 Tocopherol 및 지질과산화상태에 미치는 영향)

  • 남정혜
    • Journal of Nutrition and Health
    • /
    • v.26 no.5
    • /
    • pp.566-577
    • /
    • 1993
  • The study was to compare the effect of dietary fatty acids on fatty acid profile in tissue and the status of tocopherol and lipid peroxidation, and superoxide dismutase and glutathione peroxidase activities at two fat levels. Male Sprague Dawley rats weighing average 350g(17 weeks) were fed either low fat(LF, 4.3% w/w, 10% kcal) or high fat(HF, 20.8%, w/w, 40% kcal)diet for 6 weeks. The fats used were beef tallow as a source of saturated fatty acid, corn oil for n-6 linoleic acid, perilla oil for n-3 $\alpha$-linolenic acid and fish oil for n-3 eiocosapentatenoic acid(EPA) and n-3 docosahexaenoic acid(DHA). Palsma tocopherol was significantly reduced by fish oil compared to beef tallow at body fat level. However, there was no significant effect on the levels of plasma MDA, RBC MDA and tocopherol, and RBC hempolysis by the type and amount of dietary fat. The peroxidizibility index of fatty acid profile in plasma and liver was increased and liver MDA level was significantly increased by fish oil when dietary fat level was increased. The activities of SOD and GSHPx tended to be increased by perilla oil and fish oil at both fat oil significantly reduced the incorpration of c20:4 and increased the incorporation of c20:5 into liver compared to corn oil. The incorporation of n-3 fatty acids into tissue by perilla oil rich in $\alpha$-linolenic acid was significantly higher tan corn oil and its effect was improved with higher amount of perilla oil in diet by high fat diet. Overall, the lipid peroxidation of tissue could be prevented by tocopherol supplementation when dietary fat level was low in diet. However, at high fat diet, tocopherol supplementation might not be enough to prevent the lipid peroxidation in tissue since the potential for lipid peroxidation was tended to be increased with higher incorporation of higher unsaturated n-3 fatty acids into tissue. Therefore, it could not be recommended to consume large amount of fish oil even with excess amount of tocopherol supplemented to the high fat diet.

  • PDF

Conjugated Linoleic Acid Changes fatty Acid Composition by Decreasing Monounsaturated fatty Acids in Rabbits and Hep G2 Cells

  • Nam, Kisun
    • Journal of Nutrition and Health
    • /
    • v.30 no.4
    • /
    • pp.442-450
    • /
    • 1997
  • Conjugated dienoic derivatives of linoleic acid(CLA) are a mixture of positional and geometric isomers of linoleic acid(LA). We previously found that CLA changes the fatty acid profile in chicken eggs and serum by decreasing monounsaturated fatty acids. Studies were conducted to explore the effects of CLA on fatty acid composition. Rabbits were fed a semisynthetic diet with or without CLA(0.5g CLA/rabbit/day) for 22 weeks. Compared to the control, rabbits fed CLA had significantly lower monounsaturated fatty acid levels(palmitoleic acid Cl6 : 1 by 50% and oleic acid Cl8 : 1, by 20%) in plasma lipids. We found similar differences in fatty acid composition in the liver and the aorta. The inhibitory effect of CLA on $\Delta$9 desaturation was confirmed in a human hepatoma cell line, Hep G2. CLA significantly decreased $\Delta$9 desaturation in 4-5 hours as shown by an increase in the ratio of Cl6 : 0 to C 16 1, This is apparently due to a decrease in $\Delta$9 desaturase(stearoyl-CoA desaturase, SCD) activity ; it was decreased more than 50%. These results, along with our previous findings, indicate that CLA is an inhibitor of $\Delta$9 desaturase in the liver.

  • PDF

Quality traits of pork from cross-bred local pigs reared under free-range and semi-intensive systems

  • Ranasinghe, Navoda;Ranasinghe, Madushika Keshani;Tharangani, Himali;Nawarathne, Shan Randima;Heo, Jung Min;Jayasena, Dinesh Darshaka
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.455-464
    • /
    • 2021
  • This study was conducted to evaluate meat quality traits, proximate composition, fatty acid profile and sensory attributes of pork produced under free-range and semi-intensive pig rearing systems. Longissimus dorsi muscles from pork carcasses were taken just after the slaughtering of finishing pigs reared under semi-intensive and free-range systems to test the meat quality parameters (pH, color, water holding capacity, and cooking loss), proximate composition (moisture, protein, fat, and ash) and fatty acid profile. Furthermore, the organoleptic properties were evaluated using 30 untrained panelists. The results revealed that the system of rearing did not affect (p > 0.05) the proximate composition, water holding capacity, color, pH and cooking loss of pork along with the fatty acid composition except for vaccenic acid (p < 0.05). The monounsaturated fatty acid (MUFA) content was affected (p < 0.05) by the rearing system while no effects were observed on the unsaturated fatty acid: saturated fatty acid ratio and omega-six to omega-three fatty acids ratios (p > 0.05). No difference was observed (p > 0.05) concerning the sensory attributes although pork obtained from the free-range system had the highest scores. In conclusion, the system of rearing did not show a significant effect on the meat quality parameters, composition and sensory attributes of pork obtained from cross-bred pigs.

Rheological Properties and Fatty Acid Profile of Farm Butter Made from Cows' Milk Grazing on Mountain Pasture (산지 초지 방목우의 우유로 제조한 목장 버터의 조직 특성 및 지방산 조성)

  • Park, Seung-Young;Lee, Bae-Hun;Gang, Hyo-Jin;Kim, Gur-Yoo
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.196-207
    • /
    • 2018
  • This study was carried out to investigate the rheological properties and composition of unsaturated fatty acid of farm butter made from the milk of cows grazing at high mountain pasture in Pyronogchang SKY ranch (above sea level, 935 m). From two groups containing 7 cows each, a group was fed in-door with TMR (total mixed ration) feed and whereas the other group was grazed pastures for 12 h. The daily intake of feed on basis of dry matter (DMI), milk yields, concentration of milk constituents, and fatty acid profile of pasture milk were compared with control TMR milk. In addition, the physiochemical properties and composition of unsaturated fatty acids of the butter were also compared with those of the butter made from control TMR milk. Upon comparison, the health-promoting index (HPI) of fatty acids; the ratio of omega-6 fatty acids to omega-3 fatty acids (n-6 to n-3 UFA), the atherogenicity index (AI), and the ratio of linoleic acid to ${\alpha}$-linolenic acid (LA to ALA) was apparently improved in farm butter than those of control butter. Thus, it could make the dairy farm visitors to consume the farm butter containing the health-promoting fatty acids from the milk of cows grazing on mountain pasture.