• 제목/요약/키워드: Fatigue strength assessment

검색결과 128건 처리시간 0.026초

AFRAMAX TANKER의 CSR 적용에 대한 고찰 (Consideration for AFRAMAX TANKER Applied Common Structural Rules)

  • 김성인;김영남;김경래
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2007년도 특별논문집
    • /
    • pp.99-106
    • /
    • 2007
  • The IACS Common Structural Rules are to be applied for double hull tanker of more than 150m length with contracted after 1 April 2006. The objectives of the rules are to make more robust, safer ship and to ensure transparency of the technical background. In compliance of CSR, we had carried out prescriptive rules scantling determination and 3-D hold FE analysis of AFRAMAX TANKER. Prescriptive rules scantling determines the minimum required scantling, hull-girder longitudinal bending and shear strength, hull girder ultimate strength, local strength of plate and stiffener, strength of primary supporting member and fatigue assessment of the longitudinal stiffener end connections to the transverse bulkhead. 3-D hold FE analysis assesses the structural adequacy of the vessel's primary hull structure and major supporting members using yielding and buckling failure modes. So we could verify the strength assessment of AFRAMAX TANKER applied CSR.

  • PDF

Repair of Offshore Structures by Underwater Wet Welding Design and Fatigue Assessment

  • Krohn, A.;Petershagen, H.;Pohl, R.;Szelagowski, P.;Lafaye, G
    • Journal of Ship and Ocean Technology
    • /
    • 제1권1호
    • /
    • pp.26-34
    • /
    • 1997
  • Under water wet welding is an economically alternative for the repair of offshore structures. In this paper investigations on the fatigue strength of a wet welded pipe structural member have been reported. For the connection a special sleeve patch design has been developed. The joint was fatigue tested. The evaluation of the test was carried out by means of the hot-spot approach with regard to several extrapolation rules of the hot-spot stress. Obtained results have been compared to actual classfication rules and recommendations.

  • PDF

선박 추진용 대형 디젤엔진 기어컬럼의 구조해석 (Structural Analysis for Gear Column of Large Bore Diesel Engine)

  • 이종환;남대호;손정호;배종국
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.448-452
    • /
    • 2008
  • 2-stroke marine diesel engine has generally one exhaust valve and three fuel injection nozzle which are key component for engine's performance and combustion. Fuel injection and exhaust valve driving system are driven by rotating of camshaft. Rotation of crank shaft drives the cam shaft through gear train that is composed of $3{\sim}4$ gear wheels. Gear column supporting the gear wheel has to bear against the dynamics forces by engine running as well as gearing forces. In this paper, structural analysis for engine structure and fatigue strength assessment of welded joint is shown. Repeatedly full cyclic simulation during one cycle is performed to investigate the structural behavior of engine. Fatigue analysis is carried out based on IIW using submodeling technique to obtain more detailed stress distribution.

  • PDF

제철용 고로의 유한요소해석 (Finite Element Analysis for Iron-Making Furnace)

  • 이만승;백점기;이제명
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.245-253
    • /
    • 2004
  • There has been recent demand for extending the life of age-degraded structures and equipment by such techniques as diagnosis, maintenance, safety assessment, and estimating residual life on iron-making plants and hydraulic, thermal, and nuclear power plants. These techniques take into account comprehensive scenarios that may cause malfunction and structural damage and allow an assessment of risk based on the likely scenarios. In particular the safety assessment and residual life estimation of age-degraded ships and equipment facilities require consideration of various factors such as mechanical and thermal stresses, corrosion, hardness, load variation due to changes of operating condition, crack generation and strength reduction of material by fatigue. In this study, a detail thermal stress analysis, one of useful techniques of safety assessment and maintenance, is performed on a blast furnace by using general FEM code (MSC/NASTRAN).

  • PDF

착륙장치 복합재 토크링크 피로내구성 평가에 대한 연구 (A Study on Assessment of Fatigue Durability for Composite Torque Link of Landing Gear)

  • 권정호;강대환
    • 한국항공우주학회지
    • /
    • 제38권6호
    • /
    • pp.537-546
    • /
    • 2010
  • 본 연구는 최근 금속재를 대체하기 위하여 RTM법으로 개발된 헬리콥터 복합재 토크링크 구조에 대하여 피로 내구성 평가 절차와 기법에 대하여 고찰하였다. 피로내구성 평가에 필요한 운용수명 중 예상되는 피로하중스펙트럼을 산출하는데 보다 신뢰성이 높은 진보된 기법으로 확률적 랜덤처리 기법을 도입하였다. 그리고 불균질성이 큰 복합재에 대하여 재료의 피로특성치를 기반으로 하는 강도저하 접근법을 통하여 잔여강도와 피로파손확률 거동을 분석함으로써 보다 신뢰성 있는 내구성 평가를 수행하였다. 이때 강도저하파라미터 는 일련의 재료시편 피로시험 결과를 최대근사법을 사용하여 Weibull 파라미터를 해석함으로써 결정하였다. 또한 복합재 토크링크 실물시제에 대하여 피로내구성 시험을 수행하고 해석결과와 비교 검토하였다.

Type III 고압수소저장용기의 설계 안전성 연구 (A Study on the Design Safety of Type III High-Pressure Hydrogen Storage Vessel)

  • 박우림;전상구;김송미;권오헌
    • 한국안전학회지
    • /
    • 제34권5호
    • /
    • pp.7-14
    • /
    • 2019
  • The type III vessel, which is used to store high-pressure hydrogen gas, is made by wrapping the vessel's liner with carbon fiber composite materials for strength performance and lightening. The liner seals the internal gas and the composite resists the internal pressure. The properties of the fiber composite material depends on the angle and thickness of the fiber. Thus, engineers should consider these various design variables. However, it significantly increases the design cost due to the trial and error under designing based on experience or experiments. And, for aluminum liners, fatigue loads due to using and charging could give a huge impact on the performance of the structure. However, fatigue failure does not necessarily occur in the position under the highest load in use. Therefore, for hydrogen storage vessel, fatigue evaluation according to design patterns is essential because stress distribution varies depend on composite layer patterns. This study performed an optimization analysis and evaluated a high-pressure hydrogen storage vessel to minimize these trial and error and improve the reliability of the structure, while simultaneously conducting fatigue assessment of all patterns derived from the optimization analysis process. The results of this study are thought to be useful in the strength improvement and life design of composite reinforced high-pressure storage vessels.

독립탱크 A형 LPG선 탱크 지지구조 해석을 위한 상대운동의 모델링에 관한 연구 (A Study on the Modeling of Relative Motion for the Cargo Tank Support Structure of Type A LPG Carrier)

  • 이광용;양박달치;박치모
    • 대한조선학회논문집
    • /
    • 제46권2호
    • /
    • pp.148-154
    • /
    • 2009
  • Type A LPG Carrier is the ship using the low temperature independent cargo tank separate from the hull, which has various support structures for laying independent tanks on the hull. In this paper, the direct strength analysis for the support structures has been performed through the direct load analysis, load transfer, stress analysis and strength assessment. Also, a rational modeling method of support structures has been proposed to obtain the dynamic load between the hull and the separate tank.

LNG 선박용 알루미늄 합금 소재의 정적 및 피로 강도 평가 (Assessment for Static and Fatigue Strength of the Aluminum Alloy for LNG Ship)

  • 윤용근;김재훈;김우중;백경호;박창현
    • 한국안전학회지
    • /
    • 제28권2호
    • /
    • pp.1-5
    • /
    • 2013
  • Liquefied Natural Gas is liquefied at the condition of atmosphere pressure and cryogenic temperature. LNG is exposed very long time under the cryogenic temperature and high pressure, and it is very important to retain the structural safety in this envelopment. Until now, the material which are composing the storage tank of LNG ship has experimented at room temperature, so it is not enough to apply for the design at the cryogenic temperature. The purposes of this study are investigated mechanical properties for aluminum alloy. To evaluate tensile and fatigue test for aluminum alloy, it was considering static and fatigue conditions at room and cryogenic temperature. S-N curves were designed at both temperature respectively. Also, P-S-N curve was performed statistical method by JSME-S002.

용접잔류응력의 이완과 재분포 해석 및 실험적 검증 (Numerical Analysis and Experimental Verification of Relaxation and Redistribution of Welding Residual Stresses)

  • 송하철;조영천;장창두
    • 대한조선학회논문집
    • /
    • 제41권6호
    • /
    • pp.84-90
    • /
    • 2004
  • For the precise assessment of the effect of welding residual stresses on structural strength and fatigue crack growth behavior, new FE analysis algorithms for the estimation of residual stress relaxation due to external load and redistribution due to fatigue crack propagation were proposed in this paper. Initial welding residual stress field was obtained by thermal elasto-plastic analysis considering temperature dependent material properties, and the amount of residual stress relaxation and redistribution were assessed by subsequent elasto-plastic analysis In the analysis of fatigue crack propagation, the applied SIF(Stress Intensity Factor) range was evaluated by $\frac{1}{4}$-point displacement extrapolation method, and the effect of welding residual stresses on crack propagation was considered by introducing the effective SIF concept. The test results of crack propagations were compared with the predicted data obtained by the analysis.

Structural stree를 이용한 피로실험 data 분석 (Data analysis for fatigue test of welded joint using structural stress)

  • 박형진;김유일;강중규;허주호
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.82-84
    • /
    • 2005
  • Fatigue assessment of welded structure is very sensitive to the method of local stress determination. Normally, hot spot stress which is surface stress extracted from 0.5t, 1.5t away from weld toe is widely used to obtain local stress. However, this method has a lot of limitation in the evaluation of fatigue strength. Therefore, mesh has to comply with strict requirements since stress extracted from this method strongly rely on mesh size and element types. And that method does not cover the stress gradient through thickness direction since only surface stress is considered. Recently, new method to obtain local stress is proposed, which is structural stress. This method has an advantage, which is mesh intransitiveness and covering the effect of both bending and axial stress in local area. In this paper, fatigue test data for various welded joints was analyzed to review the reliability of structural stress. As a result, it is verified that S-N curve using structural stress guaranteed single master curve for various joint type and testing condition.

  • PDF