• 제목/요약/키워드: Fatigue load

검색결과 1,495건 처리시간 0.027초

반복충격에 의한 섬유강화 복합재료의 피로수명 특성 평가 (Evaluation of Fatigue Life Characteristic of a Fiber-Reinforced Composites under the Repeated Impact Loading)

  • 최정훈;김형익;허용;석창성;장필수;이창희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.1025-1028
    • /
    • 2005
  • Generally, fiber-reinforced composites have the highest possibilities of impact damages with external object collisions. Also, resulting in fatigue fracture considering the continued impact load. For the reasons mentioned above, the accurate understanding of interactions between the impact of composites and the fatigue load will be essential to understand the safety level of material structures. Furthermore, the composite materials and structures, due to the geometrical effect, vary the life in connection with the impact-fatigue. Therefore, I have reached the point that a focus of this study will be to evaluate fatigue fracture characteristics by the impacts-fatigue load of fiber-reinforced composites. Thus, in this paper, I have tried to work on impacts-fatigue load causing aspects and impact characteristics through impact-fatigue test on HTV-5Hl Black 9250 material made- structure, along with to evaluate the expected lift of real structures, the FEM analysis was carried out.

  • PDF

프리스트레스트 콘크리트 교량거더의 등가피로하중모델 (An Equivalent Fatigue Load Model for Prestressed Concrete Bridges Girders)

  • 김지상
    • 콘크리트학회지
    • /
    • 제6권2호
    • /
    • pp.148-158
    • /
    • 1994
  • 본 논문은 실제 교량위를 통과하는 차량에 의하여 프리스트레스트 콘크리트 합성거다 교량에 발생하는 프로하중을 합리적으로 표현할 수 있는 등가프로하중모델을 도출하는데 그 목적을 두고 있다. 교량에 작용하는 피로하중은 그 크기와 지속시간이 불규칙피로하중과 같은 피로손상을 줄 수 있는 등가의 피로하중 모델을 제안하여 피로해석 및 설계를 간편하고 합리적으로 수행할 수 있도록 하였다. 또, 이 모델의 적용성을 검토하기 위하여 국내의 교통량조사 자료를 이용하여 교량을 통과하는 차량의 확률모델을 도출하고, 이 모델로부터 작용 모멘트의 확률특성을 결정하여 피로해석을 수행하였다.

철도하중에 대한 철근 콘크리트와 강섬유 보강 철근 콘크리트 전단이음부의 피로거동에 관한 실험적 연구 (Study on the Fatigue Behavior of a Joint between RC and SFRC Subjected to Shear)

  • 강보순
    • 한국철도학회논문집
    • /
    • 제3권4호
    • /
    • pp.194-202
    • /
    • 2000
  • Fatigue behavior of shear joints between the combined reinforced concrete(RC) and the reinforced steel fiber concrete(SFRC) specimens has been experimentally investigated. Experimental parameters used are the amount of steel fiber and the type of shear joint. Six specimens have been tested under static load, and eight specimens have been subjected to the fatigue load in a range of 50 % and 5 % of the ultimate static load. The purpose of this research is to propose an empirical formula for fatigue shear behavior of the combined RC and SFRC structures on the basis of experimental result. It can be observed from experimental results that addition of steel fibers to concrete specimen increases the static ultimate load by approximately 25 %, enhances the fatigue behavior, and also reduces vertical and lateral displacements at the shear joint for a given load cycle after the occurrence of first crack.

  • PDF

Crack Opening Behavior of Perpetrated Crack Under Fatigue Load

  • Nam, Ki-Woo;Ahn, Seok-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.24-31
    • /
    • 2002
  • The leak-before-break (LBB) behaviors of a structural component under high and low fatigue loads are an important problem in nuclear power plants, liquid nitrogen gas tankers and chemical plants. This paper is an experimental study to evaluate the crack opening behavior after penetration for plate and pipe specimens. Crack opening displacement after penetration under low fatigue load could be satisfactorily determined at the center of the plate thickness regardless of the specimen size. In the case of high fatigue load, it is shown that the crack opening displacement at the center of a penetrated crack carl be derived using the gross stress, $\sigma$/sug G/, and the front surface crack length, a$\_$s/, together with the back surface crack length, a$\_$b/.

2축 하중주파수가 피로균열진전거동에 미치는 영향 (The Effect of Behavior Fatigue Crack Propagation on 2-Axle Load Frequency)

  • 김상희;;최성대
    • 한국기계가공학회지
    • /
    • 제14권1호
    • /
    • pp.78-84
    • /
    • 2015
  • The stress state acting on mechanical parts and structures is generally mixed stress. This complex stress state, which is subject to changes in the environment, will produce many. Cars running on roads with different road conditions will subject the automotive parts to combined stress state. In the x direction and the y direction, a different amplitude and frequency of the fatigue load can be present. However, the load amplitude for Mode I and Mode II in a 2-axis fatigue test is limited to a constant ratio; the load frequency is always the same for any mode. In this paper, it is verified how the variation of the load frequency for mode II affects the behavior of fatigue crack propagation under mixed mode.

Active load control for wind turbine blades using trailing edge flap

  • Lee, Jong-Won;Kim, Joong-Kwan;Han, Jae-Hung;Shin, Hyung-Kee
    • Wind and Structures
    • /
    • 제16권3호
    • /
    • pp.263-278
    • /
    • 2013
  • The fatigue load of a turbine blade has become more important because the size of commercial wind turbines has increased dramatically in the past 30 years. The reduction of the fatigue load can result in an increase in operational efficiency. This paper numerically investigates the load reduction of large wind turbine blades using active aerodynamic load control devices, namely trailing edge flaps. The PD and LQG controllers are used to determine the trailing edge flap angle; the difference between the root bending moment and its mean value during turbulent wind conditions is used as the error signal of the controllers. By numerically analyzing the effect of the trailing edge flaps on the wind turbines, a reduction of 30-50% in the standard deviation of the root bending moment was achieved. This result implies a reduction in the fatigue damage on the wind turbines, which allows the turbine blade lengths to be increased without exceeding the designed fatigue damage limit.

Influence of different fatigue loads and coating thicknesses on service performance of RC beam specimens with epoxy-coated reinforcement

  • Wang, Xiao-Hui;Gao, Yang;Gao, Run-Dong;Wang, Jing;Liu, Xi-La
    • Computers and Concrete
    • /
    • 제19권3호
    • /
    • pp.243-256
    • /
    • 2017
  • Epoxy-coated reinforcing bars are widely used to protect the corrosion of the reinforcing bars in the RC elements under their in-service environments and external loads. In most field surveys, it was reported that the corrosion resistance of the epoxy-coated reinforcing bars is typically better than the uncoated bars. However, from the experimental tests conducted in the labs, it was reported that, under the same loads, the RC elements with epoxy-coated reinforcing bars had wider cracks than the elements reinforced with the ordinary bars. Although this conclusion may be true considering the bond reduction of the reinforcing bar due to the epoxy coating, the maximum service loads used in the experimental research may be a main reason. To answer these two phenomena, service performance of 15 RC beam specimens with uncoated and epoxy-coated reinforcements under different fatigue loads was experimentally studied. Influences of different coating thicknesses of the reinforcing bars, the fatigue load range and load upper limit as well as fatigue load cycles on the mechanical performance of RC test specimens are discussed. It is concluded that, for the test specimens subjected to the comparatively lower load range and load upper limit, adverse effect on the service performance of test specimens with thicker epoxy-coated reinforcing bars is negligible. With the increments of the coating thickness and the in-service loading level, i.e., fatigue load range, load upper limit and fatigue cycles, the adverse factor resulting from the thicker coating becomes noticeable.

피로하중을 받는 유리섬유 보강 플라스틱관의 안전성에 관한 연구 (An Experimental Study on the Safety of Glass Fiber Reinforced Plastic Pipes under Fatigue Load)

  • 채원규
    • 한국안전학회지
    • /
    • 제11권3호
    • /
    • pp.154-159
    • /
    • 1996
  • In this thesis, a series of loading tests are conducted in order to investigate the fracture safety of GFRP(Glass Fiber Reinforced Plastics) pipes under fatigue load which are widely used in the developed countries becauses of their natural of anticorrosion and lightweight etc. . Fatigue test is performed by changing number of laminates and loading cycles to examine the flexural strains, the ductility and the fatigue strength for two million repeated loading cycles. From the fatigue test results, it was found that the larger the laminates of GFRP pipes is, the larger the stiffness of GFRP pipes under the fatigue load increases. This phenomenon is true until the fatigue failure. According to the S-N curve drawn by the regression analysis on the fatigue test results, the fatigue strength of percent of the static ultimate strength increases by increasing the laminates of GFRP pipes. The fatigue strength with two million repeated leading cycles in GFRP pipes with the laminates of GFRP pipes varing 15, 25, 35 shows about 75%, 80%, 84% on the static ultimate strength, respectively.

  • PDF

냉간단조 베벨기어의 굽힘피로강도 평가 (An Evaluation of Bending Fatigue Strength for Cold Forged Bevel Gear)

  • 김재훈;사정우;김덕회;이상연
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.61-67
    • /
    • 2000
  • Gears are the most commonly used parts in automotive and industrial applications. One of most common modes of gear failures is tooth breakage, which is usually produced by the bending fatigue failure. It is important to manufacture the gears which can withstand the applied stresses in view of safety and economic requirement. This paper deals with bending fatigue strength for cold forged bevel gear. Especially, to compare fatigue characteristics for manufacturing processes difference, bending fatigue tests of bevel gears made by three different processes respectively. Results indicate that the fatigue strength of bevel gear is improved by cold forging process. Intergranular fracture is found on fatigue fracture surface, and dimples are observed on final fracture surface. The fatigue failure cannot be considered as a deterministic quantity, but must be characterized statistically. This study proposes a method to estimate bending fatigue lift of the bevel gear using the probability-load-life and Weibull analysis.

  • PDF

반경방향과 모멘트하중 하에서의 깊은홈 베어링의 피로수명평가 - 수명시험 및 수명보정계수 제안 (Prediction of the Fatigue Life of Deep Groove Ball Bearing Under Radial and Moment Loads - Fatigue Life Tests and Proposal of the Life Adjustment Factors)

  • 김완두;한동철
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3149-3158
    • /
    • 1994
  • In this paper, using the formulation of dynamic equivalent load considering the effects of moment load and the equation to estimate the cage rotational speed, the new life equation of deep groove ball bearing under radial and moment loads was proposed. Fatigue life test apparatus with the measuring equipment of shaft and cage speed was designed and developed to be capable of subjecting combined radial and moment load. Fatigue life tests were executed by sudden death test method and the reliability of fatigue lives was evaluated by Weibull distribution analysis. From the results of fatigue tests and analysis, the relationships between film parameters and life adjustment factors were acquired. And it was turned out that so as to estimate the effect of moment load on fatigue life, the life adjustment factor as well as the dynamic equivalent load must be taken into account.