• Title/Summary/Keyword: Fatigue lift

Search Result 99, Processing Time 0.027 seconds

FES Exercise Program for Independent Paraplegic Walking (하반신 마비환자의 FES 독립보행을 위한 근육 강화 프로그램)

  • Khang, Seon-Hwa;Khang, Gon;Choi, Hyun-Joo;Kim, Jong-Moon;Chong, Soon-Yeol;Chung, Jin-Sang
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.69-80
    • /
    • 1998
  • This research was designed to investigate how the exercise program affects paraplegic standing and walking employing functional electrical stimulation(FES). Emphasis was also given to fatigue of major lower extremity muscles induced by different types of electrical stimulation. We applied continuous and intermittent rectangular pulse trains to quadriceps of 10 normal subjects and 4 complete paraplegic patients. The frequencies were 20Hz and 80Hz, and the knee angle was fixed at 90$^{\circ}$and 150$^{\circ}$to investigate how muscle fatigue is related to muscle length. The knee extensor torque was measured and monitored. We have been training quadriceps and gastrocnemius of a male paraplegic patient by means of electrical stimulation for the past two year. FES standing was initiated when the knee extensors became strong enough to support the body weight, and then the patient started FES walking utilizing parallel bars and a walker. We used an 8-channel constant-voltage stimulator and surface electrodes. The experimental results indicated that paralyzed muscles fatigued rapidly around the optimal length contrary to normal muscles and confirmed that low frequency and intermittent stimulation delayed fatigue. Our exercise program increased muscle force by approximately 10 folds and decreased the fatigue index to half of the initial value. In addition, the exercise enabled the patient to voluntarily lift each leg up to 10cm, which was of great help to the swing phase of FES walking. Both muscle force and resistance to fatigue were significantly enhanced right after the exercise was applied every day instead of 6 days a week. Up to date, the patient can walk for more than two and half minutes at 10m/min while controlling the on/off time of the stimulator by pushing the toggle switch attached to the walker handle.

  • PDF

Numerical Analysis of Vortex Induced Vibration of Circular Cylinder in Lock-in Regime (Lock-in 영역에서 원형실린더의 와류유기진동 전산해석)

  • Lee, Sungsu;Hwang, Kyu-Kwan;Son, Hyun-A;Jung, Dong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • The slender structures such as high rise building or marine riser are highly susceptible to dynamic force exerted by fluid-structure interactions among which vortex-induced vibration(VIV) is the main cause of dynamic unstability of the structural system. If VIV occurs in natural frequency regime of the structure, fatigue failure likely happens by so-called lock-in phenomenon. This study presents the numerical analysis of dynamic behavior of both structure and fluid in the lock-in regimes and investigates the subjacent phenomena to hold the resonance frequency in spite of the change of flow condition. Unsteady and laminar flow was considered for a two-dimensional circular cylinder which was assumed to move freely in 1 degree of freedom in the direction orthogonal to the uniform inflow. Fluid-structure interaction was implemented by solving both unsteady flow and dynamic motion of the structure sequentially in each time step where the fluid domain was remeshed considering the movement of the body. The results show reasonable agreements with previous studies and reveal characteristic features of the lock-in phenomena. Not only the lift force but also drag force are drastically increasing during the lock-in regime, the vertical displacement of the cylinder reaches up to 20% of the diameter of the cylinder. The correlation analysis between lift and vertical displacement clearly show the dramatic change of the phase difference from in-phase to out-of-phase when the cylinder experiences lock-in. From the results, it can be postulated that the change of phase difference and flow condition is responsible for the resonating behavior of the structure during lock-in.

Vehicle Load Analysis using Bridge-Weigh-in-Motion System in a Cable Stayed Bridge (BWIM 시스템을 사용한 사장교의 차량하중 분석)

  • Park, Min-Seok;Lee, Jung-Whee;Kim, Sung-Kon;Jo, Byung-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.1-8
    • /
    • 2006
  • This paper describes the procedures developing the algorithm for analyzing signals acquired from the Bridge Weigh-in-Motion (BWIM) system installed in Seohae Bridge as a part of the bridge monitoring system. Through the analysis procedure, information about heavy traffics such as weight, speed, and number of axles are attempted to be extracted from time domain strain data of the BWIM system. One of numerous pattern recognition techniques, artificial neural network (ANN) is employed since it can effectively include dynamic effects, bridge-vehicle interaction, etc. A number of vehicle running experiments with sufficient load cases are executed to acquire training and/or test set of ANN. Extracted traffic information can be utilized for developing quantitative database of loading effect. Also, it can contribute to estimate fatigue lift or current health condition, and design truck can be revised based on the database reflecting recent trend of traffic.

Experimental Study on Synthetic Jet Actuators for Separation Delay (유동 박리를 지연시키기 위한 합성제트 구동기 연구)

  • Kwon, O-Hyun;Byun, Seon-Woo;Roh, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.10-17
    • /
    • 2018
  • The size of commercial wind turbines has been increased. Generally, the pitch control is used to increase the efficiency of wind turbine. However, the pitch control has difficulty to control the local unsteady flow control which makes fatigue load and decreases the efficiency. In this research, Synthetic Jet Actuators(SJAs) are manufactured and applied into a wing section to delay flow separation and increase aerodynamic performances. The SJAs as a kind of zero-net mass-flux actuators injects and removes fluid through a small orifice with a given frequency. The SJA modules actuated by piezoelectric disks are manufactured and the aerodynamic performances are measured according to the shape of the orifice and the velocity of the jets through the wind tunnel test. It is confirmed that as the velocity of the jets are increased using rectangular shape orifice, drag force is decreased and lift force in increased.

The Effect of Voice Disorders on Quality of Life(QOL) in the Korean (한국인의 음성질환이 삶의 질에 미치는 영향)

  • 송윤경;심현섭;권기환;이경철;이용배;진성민
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.11 no.1
    • /
    • pp.51-60
    • /
    • 2000
  • Background and Objectives : Quality of life(QOL) is a construct representing physical, mental and social well-being. QOL has been used as a device for measuring the severity of health-related condition and treatment outcomes. As the social welfare system develops, the attention to QOL increases as well. The aims of this study was to examine whether the patients with voice disorder perceived significantly more the effects of voice disorder on QOL than nonpatient group did and if any, identify the sociodemographic risk factors influencing QOL of patients. Materials and Methods : This study asked 113 adults with voice disorders who were enrolled in Voice Clinic in the Department of Otolaryngology, Kangbuk Samsung Hospital between lune 1998 and January 1999 and 111 nonpatients to complete a questionnaire designed to elicit information about the effete of voice disorders on quality of lift. The questionnaire included items concerning sociodemographic areas, voice symptoms, job, effects of voice disorders on QOL domains(work, social, psychological, physical, and communication areas), potential risk factors to exposures, familial and medical history of voice disorders. Results : The sociodemographic characteristics of the patient group are as follows : (1) 75.2% of total patient group were female and the rest were male. (2) Age of total patient group ranged from 20 to 65 years. Hoarseness was the most commonly reported complaints, followed by complaints of high note difficulties during singing and voice fatigue. The patient group perceived effects of voice disorders on the areas of work, social, psychological, physical and communication more adversely than the comparison group did (p<0.05). QOL impairments were evaluated as a function of age, gender, education, and income, controlling other independent effects. The results were that (1) age was significantly associated with work problems and (2) gender and income were significantly associated with psychological problems. Conclusions : The findings indicated that the patients with voice disorders would perceive markedly adverse effect on all QOL domains, that is, work, social, psychological, physical, communicational areas. Therefore, the results of study suggest that lurker investigations about the nature of voice disorders, the prevention, treatment, and coping strategies are needed in the future.

  • PDF

The Comparison of Muscle Activation of Waist and Lower Limb during Lifting an Object from Floor according to Foot Position in Twenties Wearing a Skirt

  • Lee, Han-Suk;Kim, Joon-Ho;Park, Jung-So;Park, Sun-Wook
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.3
    • /
    • pp.243-248
    • /
    • 2014
  • PURPOSE: This study was aim to the change of muscle activities of lower extremity and waist during lifting a small object on the floor according to different foot position of women in their twenties wearing a skirt. METHODS: 9 women in their twenties wearing a skirt were selected and were measured the muscle activities of medial gastrocnemius (MG), tibialis anterior (TA), vastus lateralis (VL) and iliocostalis (IC) when they lifted a small object on the floor. The two different foot position employed were "both feet posed straight side by side" (condition 1) and "both feet posed diagonally to 45 degree" (condition 2) used. The order of feet position was selected randomly and the subject took a rest for 30 min between tests to prevent muscle fatigue. We calculated the mean and standard deviation of muscle activities and used Mann-Whitney U test to compare the difference between the two foot positions with SPSS(IBM Korea) RESULTS: The muscle activity of condition 2 was greater than that of condition 1 in right side of TA, VL, and IC and left side of TA, VL, MG and IC. The right side of TA, VL and left side VL were significant difference between condition 1 and condition 2(p<.05). CONCLUSION: We suggest "both feet posed straight side by side" position is better if a woman wearing a skirt lift the small object and it will help prevent the low back and lower limb problems in the future.

FEM Analysis on the Strength Safety of a LPG Cylinder (LPG용기의 강도 안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Jeong, Nam-In
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.55-59
    • /
    • 2007
  • This paper presents the strength safety of a LPG cylinder, which is fabricated by a steel sheet forming and a welding technology. The strength safety of a cylinder is guaranteed by analyzing a stress distribution of a LPG cylinder structure using a finite element method. The FEM computed results indicate that the hydraulic test gas pressure of $31kg/cm^2$ generates a concentrated local stress near the upper round end plate, which exceeds the yield strength of a LPG cylinder. Thus, the current hydraulic test pressure may be rechecked and revised because this pressure increases the fatigue failure and decreases the lift of the pressure vessel. The normal operation and sealing gas pressures such as $9kg/cm^2\;and\;18.6kg/cm^2$ are relatively safe for a steel LPG cylinder.

  • PDF

A study on the shape optimization of ship's bellows using DOE (실험계획법을 이용한 선박용 벨로우즈의 형상최적화에 관한 연구)

  • Kim J.P.;Kim H.J.;Kim H.S.;Cho U.S.;Jeo S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.637-640
    • /
    • 2005
  • The mechanical properties of bellows, such as the extensibility and the strength can be changed depending on the shape. For the shipbuilding material, it is favorable that the fatigue lift is long due to the elastic property and the reduction of thermal stress in piping system. Nowadays, the domestic production and design of bellows are based on the E.J.M.A Code. Therefore, the design standard is in need because of much errors and lack of detailed analysis. In this study, it is attempted to find out the optimal shape of U-type ship's bellows that is applied to design of experiment using the finite element method. The effective factors, mountain height, length, thickness, and number of mountains and the length of joint are considered and the proper values are chosen for the simulation. The number of mountains are increased, the volume increases above the standard volume and the stress obviously increases. In addition, the effect of the thickness of bellows on the stress is very large. Both of the volume and stress are decreasing at a certain lower value region.

  • PDF

Comparison of Kinematics and Myoelectrical Activity during Deadlift, with and without Variable Banded Resistance, in Healthy, Trained Athletes

  • Everett B. Lohman;Mansoor Alameri;Fulden Cakir;Chih Chieh Chia;Maxine Shih;Owee Mulay;Kezia Marceline;Simran Jaisinghani;Gurinder Bains;Michael DeLeon;Noha Daher
    • Physical Therapy Rehabilitation Science
    • /
    • v.13 no.1
    • /
    • pp.53-70
    • /
    • 2024
  • Background: The conventional deadlift is a popular exercise for enhancing trunk, core, and lower extremity strength. However, its use in sports medicine is constrained by concerns of lumbar injuries, despite evidence supporting its safety and rehabilitative benefits. To optimize muscle activation using resistive bands in variable resistance therapy, we explored their feasibility in the deadlift. Design: Comparative experimental design Methods: Surface electromyography recorded muscle activity in the trunk and lower extremities during lifting, with normalization to the isometric Floor Lift using Maximal Voluntary Contraction. Kinematics were measured using inclinometer sensors to track hip and trunk sagittal plane angles. To prevent fatigue, each subject only used one of the three pairs of bands employed in the study. Results: Our study involved 45 healthy subjects (mean age: 30.4 ± 6.3 years) with similar baseline characteristics, except for years of lifting and strength-to-years-of-lifting ratio. Various resistance band groups exhibited significantly higher muscle activity than conventional deadlifts during different phases. The minimal resistance band group had notably higher muscle activity in the trunk, core, and lower extremity muscles, particularly in the end phase. The moderate resistance band group showed increased muscle activity in the mid-and end-phases. The maximum resistance band group demonstrated greater muscle activity in specific muscles during the early phase and overall higher activity in all trunk and lower extremity muscles in the mid and end phases of the deadlift (p<0.05). Conclusion: Our findings provide valuable insights into muscle activation with various resistance bands during deadlift exercise in clinical and gym settings. There appears to be a dose-response relationship between increased resistance bandwidth, external load, myoelectric activation, and range.