• Title/Summary/Keyword: Fatigue lifetime

Search Result 150, Processing Time 0.027 seconds

Prediction of Thermal Fatigue Life of Alumina ceramics (알루미나 세라믹스의 열피로 수명 예측)

  • 정우찬;한봉석;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.871-875
    • /
    • 1999
  • Theoretical equation to calculate thermal fatigue life was derived in which slow crack growth theory was adopted. The equation is function of crack growth exponent n. Cyclic thermal fatigue tests were performed at temperature difference of 175, 187 and 200$^{\circ}C$ respectively. At each temperature difference critical thermal fatigue life cycles of the alumina ceramics were 180,37 and 7 cycles. And theoretical thermal fatigue life cycles were calculated as 172, 35 and 7 cycles at the same temperature difference conditions. Therefore thermal fatigue behavior of alumina ceramics can be represented by derived equation. Also theoretical single cycle critical thermal shock temperature difference can be calculated by this equation and the result was consistent with the experimental result well.

  • PDF

Low-cycle Fatigue Performances of P/M Ti-Fe-Mo-Al-Nd Alloy

  • Haiyan, Liu;Huiping, Tang;Cheng, Li;Yuanping, Huang;Boyun, Huang;Yong, Liu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.104-105
    • /
    • 2006
  • The low-cycle fatigue performance and fracture of the P/M Ti-Fe-Mo-Al-Nd Alloys after sintering and forging have been studied. The linear regression equation of low-cycle fatigue lifetime has been obtained; the fatigue performances are objected under two different conditions. The fatigue fracture surface is analyzed by SEM. The low-cycle fatigue behavior of the P/M titanium alloy has been discussed.

  • PDF

Influence of Cobalt Content on the Fatigue Strength of WC-Co Hardmetals

  • Nakajima, Takeshi;Hosokawa, Hiroyuki;Shimojima, Koji
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.623-624
    • /
    • 2006
  • The behavior of hardmetals under cyclic loads is investigated. Unnotched specimens were employed to obtain practical information regarding fatigue in hardmetals. All the tested hardmetals exhibit an increase in the number of cycles until failure with a decrease in the maximum stress, i.e., the hardmetals exhibit a high fatigue sensitivity. The fatigue strength increases with the cobalt content. Although distinct fatigue limits, as observed in metals, cannot be observed, the calculated fatigue limit stress at $10^7$ cycles is found to be approximately 70% of the flexural strength, and the stress value exhibits a linear relationship with the flexural stress.

  • PDF

Lifetime Estimation of an Axle Drive Shaft by Calibrated Accelerated Life Test Method (CALT 방법을 이용한 액슬구동축의 수명 예측)

  • Kim, Do-Sik;Kim, Hyoung-Eui;Yoon, Sung-Han;Kang, E-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.273-281
    • /
    • 2010
  • In this paper, a method to predict the fatigue life of an axle drive shaft by the calibrated accelerated life test (CALT) method is proposed. The CALT method is very effective for predicting lifetimes, significantly reducing test time, and quantifying reliability. The fatigue test is performed by considering two high stress and one low stress levels, and the lifetime at the normal stress level is predicted by extrapolation. In addition, in this study, the major reliability parameters such as the lifetime, accelerated power index, shape parameter, and scale parameter are determined by conducting various experiments. The lifetime prediction of the axle drive shaft is verified by comparing the experimental results with load spectrum data. The results confirm that the CALT method is effective for lifetime prediction and requires a short test time.

Elevated Temperature Design of KALIMER Reactor Internals Accounting for Creep and Stress-Rupture Effects

  • Koo, Gyeong-Hoi;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.566-594
    • /
    • 2000
  • In most LMFBR(Liquid Metal Fast Breed Reactor) design, the operating temperature is very high and the time-dependent creep and stress-rupture effects become so important in reactor structural design. Therefore, unlike with conventional PWR, the normal operating conditions can be basically dominant design loading because the hold time at elevated temperature condition is so long and enough to result in severe total creep ratcheting strains during total service lifetime. In this paper, elevated temperature design of the conceptually designed baffle annulus regions of KALIMER(Korea Advanced Liquid MEtal Reactor) reactor internal strictures is carried out for normal operating conditions which have the operating temperature 53$0^{\circ}C$ and the total service lifetime of 30 years. For the elevated temperature design of reactor internal structures, the ASME Code Case N-201-4 is used. Using this code, the time-dependent stress limits, the accumulated total inelastic strain during service lifetime, and the creep-fatigue damages are evaluated with the calculation results by the elastic analysis under conservative assumptions. The application procedures of elevated temperature design of the reactor internal structures using ASME Code Case N-201-4 with the elastic analysis method are described step by step in detail. This paper will be useful guide for actual application of elevated temperature design of various reactor types accounting for creep and stress-rupture effects.

  • PDF

Fatigue Safe Life Evaluation of Rotating Swashplate of Helicopter Main Rotor Control System (헬리콥터 주로터 조종 시스템 회전형 스와시플레이트 피로 안전수명 평가)

  • Kim, Dong-Chul;Lee, Pan-Ho;Kang, Shin-Hyun;Choi, Young-Don;Kim, Tae-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.203-210
    • /
    • 2012
  • The main rotor control system is an important structural part of a helicopter that manages the thrust and control force of the helicopter. The main rotor control system consists of a swashplate assembly, scissor assembly, pitch rod assembly, guide, etc. The main rotor control system must endure various loads, such as the thrust and control force, and must meet the optimized fatigue safety life. The rotating swashplate is an important structure influenced by the pitch rod load and rotating scissor load. In this paper, the accuracy of a result about the rotating swashplate part of the main rotor control system is proven through comparison between fatigue test and FEM results. Based on this result, we estimate the lifetime and deduce the fatigue safe lifetime.

Development of Integrated Design System for Automotive Rubber Components (자동차 방진고무부품 통합설계시스템 개발)

  • Woo, Chang-Su;Kim, Wan-Doo;Park, Hyung-Sung;Shin, Wae-Gi
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.188-193
    • /
    • 2012
  • The fatigue analysis and lifetime evaluation are very important in design procedure to assure the safety and reliability of the rubber components. Recently, the design, analysis and evaluation technology was required to achieve the high quality, fidelity, reliability of rubber products. However, rubber manufacturing companies of our country have uesd the method of trial and error and experience in the process of a compound mixing, manufacturing and improvement of rubber properties. The objectives of this study are to establish the test methods of rubber material and to make the database of rubber material properties and to evaluate the performance of rubber components and to construct the prediction system of fatigue life. Fatigue lifetime prediction methodology of the rubber component was proposed by incorporating the finite element analysis and fatigue damage parameter from fatigue test.

Evaluation of Multiaxial Fatigue Strength of a Urban Railway Wheel Steel (도시철도 차량 차륜재의 다축 피로강도 평가)

  • Ahn, Jong-Gon;You, In-Dong;Kwon, Suk-Jin;Son, Young-Jin;Kim, Ho-Kyung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.621-629
    • /
    • 2011
  • Uniaxial and biaxial torsional fatigue tests were conducted on the samples extracted from urban railway wheel steel. Ultimate and yield strengths of the steel were 1027.7 MPa and 626 MPa, respectively. The uniaxial fatigue limit was 422.5 MPa, corresponding 67% of the ultimate tensile strength. The ratio of ${\tau}_e/{\sigma}_e$ was 0.63. Fatigue strength coefficient and exponent were 1319.5 MPa and 0.339, respectively. Maximum principal and equivalent strain were found to be adequate parameter to predict fatigue lifetime of the steel under multiaixal fatigue condition.

  • PDF

A Study on the Corrosion and Fatigue of Structural Materials for Rolling Stock (철도차량 구조재료의 부식 및 피로 특성 연구)

  • Jang Se-Ky;Kim Yong-Ki;Coo Byeong-Choon
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.299-307
    • /
    • 2005
  • In general, structural integrity of rolling stock structures should last more than 25 years. During the lifetime corrosive degradation occurs. For structural design and diagnosis, quantitative relationship between corrosive degradation and variation of mechanical properties such as tensile strength and fatigue strength is needed. In this study, first of all we established the atmospheric corrosion test procedure. At regular intervals using specimens of SM490A and SS400 on the atmospheric corrosion test bed, we carried out tensile and fatigue tests. The fatigue strength decreases as the atmospheric corrosion period increases. In addition we studied the effect of post-weld heat treatment on the tensile and fatigue behaviour and performed electrochemical corrosion tests.

Dynamic Fatigue Behavior of Alumina Ceramics (알루미나 세라믹스의 동적피로거동)

  • 이홍림;이규형;박성은
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1053-1059
    • /
    • 1997
  • The dynamic fatigue behavior of alumina ceramics was observed at room temperature using four point bending system. The dynamic fatigue fracture strength and the dynamic fatigue lifetime were observed as a function of crosshead speed and the notch length. The notched specimen showed the smaller deviation in dynamic fatigue fracture strength than the unnotched specimen. The crack growth exponent n and the material constant A of the notched specimen could be represented as functions of the notch length. Fracture strength of the specimen calculated from the notch length, when the notch length was regarded as the crack size, was in good agreement with the measured 4 point bending strength. Fracture surface of the specimen showed the different fracture modes according to the crosshead speed. The four point flexural strength, fracture toughness, Young's modulus and Weibull modulus of the alumina were measured as 360 MPa, 3.91 MPa.m1/2, 159GPa, 17.64, respectively.

  • PDF