• 제목/요약/키워드: Fatigue life prediction

검색결과 500건 처리시간 0.022초

항공기 겹침이음 조립구조의 프레팅 피로수명 예측 (Prediction of Fretting Fatigue Life for Lap Joint Structures of Aircraft)

  • 권정호;주선영
    • 한국항공우주학회지
    • /
    • 제37권7호
    • /
    • pp.642-652
    • /
    • 2009
  • 항공기 주구조에 많은 부분은 겹침이음 형태의 조립구조이며 이러한 구조는 프레팅 손상으로 인해 단순피로에 비해 현저히 수명이 감소된다. 특히 노후 항공기의 경우 프레팅 피로균열은 감항안전을 저해하는 중요한 요인으로 최근 대두된 수명연장 문제와 관련해서도 손상허용성 평가에 프레팅 피로수명 예측이 필수적으로 요구되고 있다. 이러한 배경으로 본 연구에서는 볼트 체결력이 서로 다른 겹침이음 구조시편에 대하여 일련의 프레팅 피로시험을 수행하고 탄소성 접촉응력 유한요소해석 결과로부터 프레팅 파라미터를 구하고 균열발생 및 성장 수명예측 모델식과 최근 제안된 수정 모델식을 통하여 프레팅 피로수명을 예측하였다. 또한 시험결과와 비교분석함으로써 실제 항공기 겹침이음 구조에 프레팅 피로수명 예측 모델식의 적용 유효성을 고찰하였다.

비행체 하중을 고려한 항공기용 센서 포드의 피로수명 예측 (Fatigue Life Prediction of Sensor Pod for Aircraft Considering Aircraft Loads)

  • 조재명;장준;최우천;배종인
    • 항공우주시스템공학회지
    • /
    • 제13권3호
    • /
    • pp.32-39
    • /
    • 2019
  • 항공기 외부에 장착되어 전술임무에 사용되는 센서 포드는 운용기간 동안 예상되는 하중 스펙트럼에 대한 피로수명이 확보되어야 한다. 센서 포드와 같은 임무장비는 해석의 효율성을 고려하여 동적 진동 환경조건을 적용한 주파수 영역의 피로수명 예측방법이 선호되어 왔다. 본 논문에서는 실제 비행체 하중 스펙트럼을 고려하여 정적 및 동적 하중에 의한 응력을 합성한 주파수 영역에서의 피로수명 예측방법을 제안하였다. 기존 해석방법과 비교한 결과 제안된 해석방법은 피로수명이 보수적으로 예측되었다. 그리고 제안된 방법으로 해석한 결과 설계된 센서 포드는 피로수명 요구조건을 만족하였다.

SiC 휘스커 보강 Al6061 복합재료의 통계학적 피로균열진전 수명예측 (Statistical Life Prediction of Fatigue Crack Growth for SiC Whisker Reinforced Aluminium Composite)

  • 권재도;안정주;김상태
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.475-485
    • /
    • 1995
  • In this study, statistical analysis of fatigue data which had obtained from respective 24 fatigue crack, was examined for SiC whisker reinforced aluminium 6061 composite alloy (SiC$_{w}$/A16061) and aluminium 6061 alloy. SiC volume fraction in composite alloy is 25%. The analysis results stress intensity factor range and 0.1 mm fatigue crack initiation life for SiC$_{w}$/A16061 composite & A16061 matrix are the log-normal distribution. And regression analysis by linear model, exponential model and multiplicative model were performed to find out the relationship between fatigue crack growth rate(da/dN) and stress intensity for find out the relationship between fatigue crack growth rate(da/dN) and stress intensity factor range(.DELTA.K) in the SiC$_{w}$/A16061 composite and examine the applicability of Paris' equation to SiC$_{w}$A16061 composite. Also computer simulation was performed for fatigue life prediction of SiC$_{w}$/A16061 composite using the statistical results of this study.udy.

주조 알루미늄합금 A356의 저주기 피로특성 및 피로수명 모델 (Low Cycle Fatigue Characteristics of A356 Cast Aluminum Alloy and Fatigue Life Models)

  • 고승기
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.131-139
    • /
    • 1993
  • Low cycle fatigue characteristics of cast aluminum alloy A356 with a yield strength and ultimate strength of 229 and 283 MPa respectively was evaluated using smooth axial specimen under strain controlled condition. Reversals to failure ranged from 16 to 107. The cast aluminum alloy exhibited cyclically strain-gardening behavior. The results of low cycle fatigue tests indicated that the conventional low cycle fatigue tests indicated that the conventional low cycle fatigue life model was not a satisfactory representation of the data. This occurred because the elastic strain-life curve was not-log-log linear and this phenomena caused a nonconservative and unsafe fatigue life prediction at both extremes of long and short lives. A linear log-log total strain-life model and a bilinear log-log elastic strain-life model were proposed in order to improve the representation of data compared to the conventional low cycle fatigue life model. Both proposed fatigue life models were statistically analyzed using F tests and successfully satisfied. However, the low cycle fatigue life model generated by the bilinear log-log elastic strain-life equation yielded a discontinuous curve with nonconservatism in the region of discontinuity. Among the models examined, the linear log-log total strain-life model provided the best representation of the low cycle fatigue data. Low cycle fatigue life prediction method based on the local strain approach could conveniently incorporated both proposed fatigue life models.

  • PDF

Roll 수명예측모델에 의한 열연작업롤 진단 (Work Roll Diagnosis by Roll Life Prediction Model in Hot Rolling Process)

  • 배용환;장삼규;이석희
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.69-80
    • /
    • 1993
  • It is important to prevent roll failure in hot rolling process for reducing maintenance coat and production loss. Roll material and rolling conditions such as the roll force and torque have been intensively investigated to overcome the roll failures. In this study, a computer roll life prediction system under working condition is developed and evaluated on IBM-PC level. The system is composed and fatigue estimation models which are stress analysis, crack propagation, wear and fatigue estimation. Roll damage can be predicted by calculating the stress anplification, crack depth propagation and fatigue level in the roll using this computer model. The developed system is applied to a work roll in actual hot rolling process for reliability evaluation. Roll failures can be diagnosed and the propriety of current working condition can be determined through roll life prediction simulation.

  • PDF

금형의 피로수명 예측에 관한 연구 (A Study on the Prediction of Fatigue Life in Die)

  • 여은구
    • 한국생산제조학회지
    • /
    • 제8권4호
    • /
    • pp.87-92
    • /
    • 1999
  • Generally the life of die is limited by fatigue fracture or dimensional inaccuracy originated from wear. In this paper to predict the fatigue life of die the stress and strain histories of die can be predicted by the analysis of elastic-plastic finite element method and the elastic analysis of die during the process analysis of workpiece. Also the stress-life curve of die material can be obtained through experiment. With the above to재 facts we propose the analysis method of prediction fatigue life in die,. In the proposed model the analysis of elastic-plastic finite element method for material is carried out by using ABAQUS. Surface force resulted from the contacting border of the die and workpiece is transformed into the nodal force of die to implement elastic analysis. besides the proposed analysis model of die is applied to extrusion die and forging. die.

  • PDF

Fe-18Mn TWIP강의 Pre-strain에 따른 저주기 피로 수명 예측 모델 연구 (A Prediction Model for Low Cycle Fatigue Life of Pre-strained Fe-18Mn TWIP Steel)

  • 김용우;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.259-262
    • /
    • 2009
  • The influence of pre-strain in low-cycle fatigue behavior of Fe-18Mn-0.05Al-0.6C TWIP steel was studied by conducting axial strain-controlled tests. As-received plates were deformed by rolling with reduction ratios of 10 and 30%, respectively. A triangular waveform with a constant frequency of 1 Hz was employed for low cycle fatigue test at the strain amplitudes in the range of ${\pm}0.4{\sim}{\pm}0.6$ pct. The results showed that low-cycle fatigue life was strongly dependent on the amount of pre-strain as well as the strain amplitude. Increasing the amount of prestrain, the number of reversals to failure was significantly decreased at high strain amplitudes, but the effect was negilgible at low strain amplitudes. A new model for predicting fatigue life of pre-strained body has been devised adding a correction term of ${\Delta}E_{pre-strain}$ to the energy-based fatigue damage parameter.

  • PDF

알루미나 세라믹스의 열피로 수명 예측 (Prediction of Thermal Fatigue Life of Alumina ceramics)

  • 정우찬;한봉석;이홍림
    • 한국세라믹학회지
    • /
    • 제36권8호
    • /
    • pp.871-875
    • /
    • 1999
  • Theoretical equation to calculate thermal fatigue life was derived in which slow crack growth theory was adopted. The equation is function of crack growth exponent n. Cyclic thermal fatigue tests were performed at temperature difference of 175, 187 and 200$^{\circ}C$ respectively. At each temperature difference critical thermal fatigue life cycles of the alumina ceramics were 180,37 and 7 cycles. And theoretical thermal fatigue life cycles were calculated as 172, 35 and 7 cycles at the same temperature difference conditions. Therefore thermal fatigue behavior of alumina ceramics can be represented by derived equation. Also theoretical single cycle critical thermal shock temperature difference can be calculated by this equation and the result was consistent with the experimental result well.

  • PDF

찢김에너지를 이용한 자동차용 방진 부품의 내구수명 예측 (Fatigue Life Prediction for Automotive Vibroisolating Rubber Component Using Tearing Energy)

  • 문형일;김호;우창수;김헌영
    • 한국자동차공학회논문집
    • /
    • 제20권6호
    • /
    • pp.100-106
    • /
    • 2012
  • Recently, the demand to acquire and improve durability performance has steadily risen in rubber components design. In design process of a rubber component, an analytical prediction is the most effective way to improve fatigue life. Existing methods of analytical estimation have mainly used an equation for fatigue life obtained from fatigue test data. However, such formula is rarely used due to costs and time required for fatigue testing, as well as randomness of rubber materials. In this paper, we describe fatigue life estimation of rubber component using only the results from a relatively simple tearing test. We estimated fatigue life of the Janggu type fatigue specimen and the automotive motor mount, and evaluated reliability of the proposed method by comparing the estimated values with actual test results.

작은 표면균열의 성장특성에 의한 수명예측 (A Fatigue Life Prediction by Growth Characteristics of a Small Surface Crack)

  • 서창민;임창순;강용구
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.617-617
    • /
    • 1989
  • This paper deals with a fatigue life prediction of a surface crack based on the experimentally obtained relationship between surface crack length ratio $a/a_{f}$ and cycle ratio $N/N_{f}$ using micro computer. Firstly $a/a_{f}$-$N/N_{f}$ curves obtained from experimental tests, were assumed as three curves UC(the upper limit curve), LC(the lower limit curve) and MC(the middle curve), and these were utilized to predict the fatigue life. Comparing the calculated values which represent the characteristics of crack growth behaviors from the three assumed curves with the experimental ones, it has been found that in the stable crack growth region, they coincide reasonably well each other. And the differences between the fatigue lives obtained from the assumed curves and the experimental fatigue life did not exceed 20%. Using the characteristics of $a/a_{f}$-$N/N_{f}$ curves, it is possible to predict the da/dN-Kmax curves and the S-$N_{f}$ curves.