• Title/Summary/Keyword: Fatigue damage

Search Result 1,089, Processing Time 0.02 seconds

RRR Behavior due to Fatigue Damage in NbTi Superconductor Cable (피로손상을 받은 NbTi초전도 선재의 RRR거동패동)

  • 신형섭;배영준;하동우;오상수
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • In order to investigate the effect of fatigue damage on the properties of RRR in this study. fatigue tests at room temperature and residual resistivity measurement tests at 12K were carried out using annealed 9 strand Cu-Ni/NbTi/Cu composite cables Through fatigue tests of NbTi composite cables. a conventional S-N curve could be obtained even though there existed a possibility of fretting among strands, From the resistivity measurement of a NbTi strand after fatigue test, it was found that the RRR of xii·gin strand for annealed cables was 3 times more than that for as-received one. With increasing of fatigue cycles at a sress amplitude level. the RRR decreased. which was resulted from the accumulation of damage such as lattice defects and dislocation within the Cu stabilizer.

  • PDF

FATIGUE DAMAGE PARAMETER OF SPOT WELDED JOINTS UNDER PROPORTIONAL LOADING

  • KANG H. T.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.285-291
    • /
    • 2005
  • In this paper, the author proposes a fatigue damage parameter of spot welded joints under proportional loading. The proposed fatigue damage parameter is developed based on von Mises' equivalent stress and local structural stress at the edge of spot weld nugget. The structural stress at the edges of the weld nugget in each sheet is calculated using the forces and moments that are determined by finite element analysis. A structural equivalent stress is then calculated by von Mises' equivalent stress equation. The structural equivalent stresses are correlated to experimental fatigue life of the spot welded joints. The proposed parameter is evaluated with fatigue test data of spot welds subjected to multi axial and tensile-shear loads. Sheppard's parameter and Rupp and co-workers' parameter are also evaluated with the same test data to compare with the author's parameter. This proposed parameter presents a better correlation with experimental fatigue data than those of Sheppard's and Rupp and co-workers' parameter. The proposed parameter should be very effective for durability calculations during the early design phase since coarsely meshed finite element models can be employed.

Evaluation of Surface Fatigue Degradation Using Acoustic Nonlinearity of Surface Wave (표면파의 음향비선형 특성을 이용한 표면 피로열화 평가)

  • Lee, Jae-Ik;Lee, Tae-Hun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.415-420
    • /
    • 2009
  • This paper reports the results of a case study for the evaluation of surface damage by using acoustic nonlinearity of surface wave. In this study, the experimental system was constructed to measure the acoustic nonlinear parameter of surface wave in an Aluminum 6061 T6 specimen of which surface was damaged by the three point bending fatigue test, and magnitudes of nonlinear parameter measured before and after the fatigue test were compared. Especially, since the surface fatigue damage by the three point bending is concentrated at the central position of loading, the change in the nonlinear parameter around this position was monitored. Experimental results showed that the measured nonlinear parameter at the outside of this position after the fatigue test was almost same as the initial value before the fatigue test, since the fatigue damage at this position was little. However, clear increase in the nonlinear parameter was noticed after the fatigue test at the central position of specimen where the surface fatigue damage is expected to be concentrated.

Analysis of acoustic emission signals during fatigue testing of a M36 bolt using the Hilbert-Huang spectrum

  • Leaman, Felix;Herz, Aljoscha;Brinnel, Victoria;Baltes, Ralph;Clausen, Elisabeth
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.13-25
    • /
    • 2020
  • One of the most important aspects in structural health monitoring is the detection of fatigue damage. Structural components such as heavy-duty bolts work under high dynamic loads, and thus are prone to accumulate fatigue damage and cracks may originate. Those heavy-duty bolts are used, for example, in wind power generation and mining equipment. Therefore, the investigation of new and more effective monitoring technologies attracts a great interest. In this study the acoustic emission (AE) technology was employed to detect incipient damage during fatigue testing of a M36 bolt. Initial results showed that the AE signals have a high level of background noise due to how the load is applied by the fatigue testing machine. Thus, an advanced signal processing method in the time-frequency domain, the Hilbert-Huang Spectrum (HHS), was applied to reveal AE components buried in background noise in form of high-frequency peaks that can be associated with damage progression. Accordingly, the main contribution of the present study is providing insights regarding the detection of incipient damage during fatigue testing using AE signals and providing recommendations for further research.

[Retracted]Estimation of the Fatigue Damage for an Ice-going Vessel under Broken Ice Condition Part I - Direct Approach ([논문철회]유빙 하중을 받는 내빙 선박의 피로손상도 추정 Part I - 직접 해석법)

  • Kim, Jeong-Hwan;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.217-230
    • /
    • 2019
  • In this study, a fatigue damage estimation for an ice-going vessel navigating through broken ice fields was carried out. A numerical model to simulate the interaction between ice and structure developed using the finite element method was introduced. Time series of stresses calculated by the proposed model and the corresponding fatigue analysis results are presented. The numerical model enables the long time analysis through an efficient interaction model, the application of the periodic media analysis and the convolution integral, and it allows the stress time history to be extracted directly using the finite element method. To describe the probability distribution of stress amplitudes, the 2-parameter Weibull model was applied to the calculated stress time history, and the fatigue damage was calculated using the Palmgren-Miner rule. Finally, the fatigue damage considering the ice conditions of the Baltic Sea was calculated using the proposed method and LR method, and the results were compared to each other.

Coupling effects between wind and train transit induced fatigue damage in suspension bridges

  • Petrini, Francesco;Olmati, Pierluigi;Bontempi, Franco
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.311-324
    • /
    • 2019
  • Long-span steel suspension bridges develop significant vibrations under the effect of external time-variable loadings because their slenderness. This causes significant stresses variations that could induce fatigue problems in critical components of the bridge. The research outcome presented in this paper includes a fatigue analysis of a long suspension bridge with 3300 meters central suspended span under wind action and train transit. Special focus is made on the counterintuitive interaction effects between train and wind loads in terms of fatigue damage accumulation in the hanger ropes. In fact the coupling of the two actions is shown to have positive effects for some hangers in terms of damage accumulation. Fatigue damage is evaluated using a linear accumulation model (Palmgren-Miner rule), analyses are carried out in time domain by a three-dimensional non-linear finite element model of the bridge. Rational explanation regarding the above-mentioned counterintuitive behavior is given on the basis of the stress time histories obtained for pertinent hangers under the effects of wind and train as acting separately or simultaneously. The interaction between wind and train traffic loads can be critical for a some hanger ropes therefore interaction phenomena within loads should be considered in the design.

Fatigue Damage of Quasi-Isotropic Composite Laminates Under Tensile Loading in Different Directions (인장하중방향 변화를 받는 의사등방성 복합재 적층판의 피로손상)

  • 김택현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.80-85
    • /
    • 1999
  • The purpose of this work is to investigate fatigue damage of quasi-isotropic laminates under tensile loading in different directions. Low cycle fatigue tests of [0/-60/+60]a laminates and [+30/-30/90]s lamina tes were carried out. Material systems used are AS4/Epoxy and AS4/PEEK. The fatigue damage of [+30/-30/90]s is very different from that of [0/-60/+60]s. The position of delamination generated at AS4/Epoxy and AS$/PEEK laminates were differentiated by the matrix difference that is, we suppose, the value of both GIcr(critical energy release rate of mode-I) and GIIIcr(critical energy release rate of mode-III) difference.

  • PDF

Study on Structural Analysis of Front Axle (전방 차축의 구조해석에 관한 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.65-71
    • /
    • 2011
  • This study analyzes about front axle through the analyses of stress, fatigue and vibration. Maximum equivalent stress is shown with the frequency of 60Hz in case of the harmonic vibration analysis applied with force. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-2{\times}10^5MPa$ and the amplitude stress of 0 to $-2{\times}10^5MPa$, the possibility of maximum damage becomes 3%. This stress state can be shown with 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design of front axle by investigating prevention and durability against its damage.

Structural Analysis on Tension Bearing of Automotive Engine (자동차 엔진 텐션베어링에 대한 구조해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.21-28
    • /
    • 2012
  • This study analyzes about automotive engine tension bearing through the structural analyses of fatigue and vibration. Maximum equivalent stress is shown at the lower of tensioner. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-10^{6}MPa$, the possibility of maximum damage becomes 3%. This stress state can be shown with 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design of tension bearing by investigating prevention and durability against its damage.

Structural Analysis on Durability of Forklift due to Opening and Closing Between Forks (개폐에 따른 지게차 포크의 내구성에 대한 구조해석)

  • Cho, Jaeung;Han, Moonsik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.199-205
    • /
    • 2013
  • Stress and deformation on forklift happened at loading, unloading or moving freight are studied by structural and fatigue analysis in this study. As model 1 as closing type between forks has lower stress and stain than model 2 at opening type, model 1 has more durability than model 2. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'SAE bracket history' with the severest change of load at model 1 and 2, maximum life is shown with Cycle. Minimum damage with 854 at model 2 becomes much higher than model 1. As the gap between forks becomes open, the damage probability becomes higher. The structural result of this study can be effectively utilized with the safe and stable design of forklift by investigating prevention and durability against its damage.