• Title/Summary/Keyword: Fatigue cyclic loading

Search Result 261, Processing Time 0.028 seconds

A Study on Fatigue Characteristics of Domestic Low-Relaxation PS Strands (국산 저이완 PS 강연선의 피로특성에 관한 연구)

  • 변근주;송하원;박상순;노병철
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.113-119
    • /
    • 1999
  • Fatigue failure is a phenomenon such that structures under cyclic service load is failed by sudden brittle manner. Therefore, in order to obtain structures safety against the fatigue failure during their service lifes, fatigue characteristics should be considered for design and analysis of the structures. As stress range of prestressed (PS) tendons, which governs fatigus characteristic of prestressed concrete (PSC) structures, increases with increased use of partial prestressig, it is more necessary to consider fatigue characteristics of PS tendons. In this paper, direct-tension fatigue experiments with special specimen-setting devices are carried out to obtain fatigue characteristics of domestic low relaxation PS strands having different diameters and PS strands connected with coupler. Then, allowable stress range of fatigue for PSC beams using low relaxation strands are presented for the fatigue examination of prestressed concrete beams applied cyclic loading.

Fatigue Life Prediction of Stainless Steel Using Acoustic Emission (음향방출법을 이용한 스테인레스강 피로수명 예측)

  • Kim, Y.H.;Jung, C.K.;Yang, Y.C.;Han, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.193-198
    • /
    • 2001
  • The feasibility of the acoustic emission technique in predicting the residual fatigue life of STS304 stainless steel is presented. Acoustic emission was continuously monitored during the fatigue tests. Considerable acoustic emission occurred during the first few cycles. Acoustic Emission increased rapidly at about 90% of the fatigue life, clear and ample warning of impending fatigue failure was observed. Fatigue damage accumulation was evaluated in terms of an AE cumulative counts. The AE cumulative counts may be taken as an indicator of fatigue cumulative damage. Fatigue damages corresponding to 20, 40, 60 and 80% of the total life were induced at a cyclic stress amplitude. The specimens with and without fatigue damage were subjected to tensile tests. In tensile tests, the total cumulative counts were reduced with increasing fatigue damage. It was observed that the residual tensile strength of material did not change significantly with prior cyclic loading damages.

  • PDF

Plastic Deformation of Rail Roadbad through Laboratory Cyclic Loading Test (실내 진동 모형실험을 통한 철도 노반재료의 소성변형특성)

  • Shin, Eun-Chul;Kang, Hyoun-Hoi;Choi, Chan-Young
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1705-1711
    • /
    • 2008
  • Analysis of settlement of foundation under the cyclic loading is very important element in the field construction. The fatigue of construct is inflicted by wheel load of mobile unit with railroad and superhighway. The settlement behavior under the cyclic loading is investigated through Power Model by Li and Selig. However, the settlement tendency of foundation appears to be the settlement of general Europe cohesive soil. In this study, the Power Model was used to determine the plastic deformation for sandy soil. Based on the laboratory cyclic loading test a, m, b parameters, for using in the Power Model were presented.

  • PDF

Functional Relationships between Fatigue Data

  • Beiss, Paul
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.140-141
    • /
    • 2006
  • Most PM components are exposed to cyclic loading over long periods of time, yet, the fatigue performance is often at best characterized by a fully reversed bending strength. The effects of density, deviating loading modes, external notches or mean stresses must usually be estimated. The amount of available data is nowadays sufficient to come to fact-based estimates.

  • PDF

A Study on Plastic Fatigue of Structural Steel Elements under Cyclic Loading (반복하중을 받는 강구조 요소의 소성피로에 관한 연구)

  • Park, Yeon Soo;Park, Sun Joon;Kang, Sung Hoo;Yoon, Young Phil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.193-204
    • /
    • 1997
  • In order to quantify the relationships of the important physical factors relating failure to strong earthquake loading, the plastic fatigue problems for structural components under repeated loading were reviewed first. A new concept of very low cycle fatigue failure for structural components under severe cyclic excitations as in strong earthquakes was represented. Also, an experimental study was made of the very low cycle fatigue failure of structural steel elements. It was attempted to realize the ultimate failure in the course of loading repetitions of the order of several to twenty. The test specimen had a form of rectangular plate, representing a thin-plated element in a steel member as wide-flange cross section. It was subjected to uniaxial loading repeatedly, until complete failure takes place after undergoing inelastic buckling, plastic elongation and/or their combination. It was seen as a result that the state of the ultimate failure is closely related to the maximum strain at the extreme fiber in the cross section.

  • PDF

Effect of loading direction on the low cycle fatigue behavior of rolled AZ31 Mg alloy (AZ31 Mg 합금 압연 판재에서 하중방향에 따른 저주기 피로특성)

  • Park, S.H.;Hong, S.G.;Lee, B.H.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.77-80
    • /
    • 2008
  • Low-cycle fatigue (LCF) tests were carried out to investigate the effect of loading direction on the cyclic deformation behavior and fatigue resistance of rolled AZ31 magnesium alloy. The as-received alloy showed a strong basal texture indicating that the most of basal planes of hexagonal close-packed structure were located parallel to the rolling direction. Two types of specimens whose loading directions were oriented parallel (RD) and vertical (ND) to the rolling direction. respectively, were used for the comparison. It was found that RD specimens yielded at much lower stresses during compression, while vice versa for the ND specimens, which was mainly attributed to the formation of primary twins. This anisotropic deformation behavior resulted in the different mean stresses during the cycling of RD and ND specimens, affecting the fatigue resistance of two specimens. The ND specimen showed a superior fatigue resistance as compared to the RD specimen under strain-controlled condition.

  • PDF

Residual bearing capacity of steel-concrete composite beams under fatigue loading

  • Wang, Bing;Liu, Xiaoling;Zhuge, Ping
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.559-569
    • /
    • 2021
  • This study was conducted to investigate the residual bearing capacity of steel-concrete composite beams under high-cycle fatigue loading through experiments and theoretical analysis. Six test beams with stud connectors were designed and fabricated for static, complete fatigue, and partial fatigue tests. The failure modes and the degradation of several mechanical performance indicators of the composite beams under high-cycle fatigue loading were analyzed. A calculation method for the residual bearing capacity of the composite beams after certain quantities of cyclic loading cycles was established by introducing nonlinear fatigue damage models for concrete, steel beam, and shear connectors beginning with the material residual strength attenuation process. The results show that the failure mode of the composite beams under the given fatigue load appears to be primarily affected by the number of cycles. As the number of fatigue loadings increases, the failure mode transforms from mid-span concrete crushing to stud cutting. The bearing capacity of a 3.0-m span composite beam after two million fatigue cycles is degraded by 30.7% due to premature failure of the stud. The calculated values of the residual bearing capacity method of the composite beam established in this paper agree well with the test values, which indicates that the model is feasibly applicable.

Numerical modeling for cyclic crack bridging behavior of fiber reinforced cementitious composites

  • Shin, Kyung-Joon;Lee, Kwang-Myong;Chang, Sung-Pil
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.147-164
    • /
    • 2008
  • Recently, many researches have been done to examine the behavior of fiber reinforced concrete (FRC) subjected to the static loading. However, a few studies have been devoted to cyclic behaviors of FRC. A main objective of this paper is to investigate the cyclic behavior of FRC through theoretical method. A new cyclic bridging model was proposed for the analysis of fiber reinforced cementitious composites under cyclic loading. In the model, non-uniform degradation of interfacial bonding under cyclic tension was considered. Fatigue test results for FRC were numerically simulated using proposed models and the proposed model is achieving better agreement than the previous model. Consequently, the model can establish a basis for analyzing cyclic behavior of fiber reinforced composites.

The Effect of Tensile Hold time on the Fatigue Crack Propagation Property and Grain Size on the Creep Behavior in STS 316L. (STS316L의 고온피로균열에 미치는 인장유지시간의 효과 및 결정립크기에 따른 크리프 거동에 관한 연구)

  • 김수영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.373-378
    • /
    • 2000
  • The heat resistant material, in service, may experience static loading, cyclic loading, or a combination of two. An experimental study of crack growth behavior of STS 316L austenitic stainless steel under fatigue, and creep-fatigue loading conditions were carried out on compact tension specimens at various tensile hold times. In the crack growth experiments under hold times. In the crack growth experiments under hold time loading conditions, tensile hold times were ranged from 5 seconds to 100 seconds and its behavior was characterized using the $\Delta$K parameter. The crack growth rates generally increase with increasing hold times. However in this material, the trend of crack growth rates decreases with increasing hold times for short hold time range relatively. It is attributed to a decline in the cyclic crack growth rate as a result of blunting at the crack tip by creep deformation. The effect of grain size on the creep behavior of STS 316L was investigated. Specimens with grain size of 30, 65 and 125${\mu}{\textrm}{m}$ were prepared through various heat treatments and they were tested under various test conditions. The fracture mode of 316L changed from transgranular to intergranular with increasing grain size.

  • PDF

Biomechanical Testing of Anterior Cervical Spine Implants: Evaluation of Changes in Strength Characteristics and Metal Fatigue Resulting from Minimal Bending and Cyclic Loading

  • Kim, Sung-Bum;Bak, Koang-Hum;Cheong, Jin-Hwan;Kim, Jae-Min;Kim, Choong-Hyun;Oh, Seong-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.3
    • /
    • pp.217-222
    • /
    • 2005
  • Objective: To achieve optimal fit of implant, it is necessary to bend the implant during spine surgery. Bending procedure may decrease stiffness of plate especially made of titanium and stainless steel. Typically titanium suffers adverse effects including early crack propagation when it is bent. We investigate whether 6 degree bending of titanium plates would decrease the stiffness after full cyclic loading by comparing with non-bending titanium plates group. Methods: Authors experimented 40 titanium alloy plates of 57mm in length, manufactured by 5 different companies. Total 40 plates were divided into two groups (20 bent plates for experimental group and 20 non-bent plates for control group). Twenty plates of experimental group were bent to 6 degree with 3-point bending technique and verified with image analyzer. Using the electron microscope, we sought for a initial crack before and after 3-point bending. Mechanical testing by means of 6000 cyclic axial-compression loading of 35N in compression with moment arm of 35mm-1.1 Nm was conducted on each plate and followed by the electron microscopic examination to detect crack or fissure on plates. Results: The stiffness was decreased after 6000 cyclic loading, but there was no statistically significant difference in stiffness between experimental and control group. There was no evidence of change in grain structure on the electron microscopic magnification. Conclusion: The titanium cervical plates can be bent to 6 degree without any crack or weakness of plate. We also assume that minimal bending may increase the resistance to fatigue fracture in cervical flexion-extension movement.