• 제목/요약/키워드: Fatigue cracking

검색결과 255건 처리시간 0.029초

역학적이론과 경험에 근거한 실용적 연성포장 설계법 개발 (Evelopment of a Practical Mechanistic-Empirical design Procedure for Flexible Pavements)

  • 박동엽;김형배;;서영찬
    • 한국도로학회논문집
    • /
    • 제4권3호
    • /
    • pp.1-13
    • /
    • 2002
  • 현재 도로 설계는 기존의 경험적인 설계법에서 역학적인 설계법으로 바뀌고 있는 추세이다. 이러한 전환기에서 세계 많은 도로국들은 역학적-경험적인 도로 설계법을 개발하고 있고 혹은 이미 채택하여 적용하고 있다. 이에 실제 미국 미시간 도로국에서 나온 자료를 바탕으로 역학적-경험적 설계법을 개발하였다. 이 역학적-경험적 설계법의 연결 함수 (transfer function)로 사용될 소성 변형 예측 모델과 피로 균열 예측 모델도 함께 개발되었다. 여기서는 이 설계법을 개발하는데 사용된 자료와 예측 모델, 설계 알고리듬등이 소개된다. 이 설계법의 검증을 위해 기존의 경험적 설계법에 의한 설계와 새로 제시된 설계법에 의한 설계가 비교된다. 새로 설계된 설계법은 설계자 혹은 사용자가 도로 파손의 기준을 정량적으로 정함으로서 좀더 구체적으로 설계를 할 수가 있다.

  • PDF

Evaluation on Fatigue Characteristics of Tire Sidewall Rubber according to Aging Temperature

  • Jun, Namgyu;Moon, Byungwoo;Kim, Yongseok;Koo, Jae-Mean;Seok, Chang-Sung;Hong, Ui Seok;Oh, Min Kyeong;Kim, Seong Rae
    • Elastomers and Composites
    • /
    • 제52권3호
    • /
    • pp.167-172
    • /
    • 2017
  • Ultra-high performance (UHP) tires, for which demand has recently surged, are subject to severe strain conditions due to the low aspect ratio of their sidewalls. It is important to ensure sidewall material durability, since a sudden tire sidewall breakage during vehicle operation is likely to cause a major accident. In the automotive application of rubber parts, cracking is defined as a failure because when cracks occur, the mechanical properties of rubber change. According to Mars, Andre et al., strain and strain energy density (SED) are mainly used as a failure parameters and the SED is generally used as a fatigue damage parameter. In this study, the fatigue life curves of sidewall rubber of tires were determined by using the SED as fatigue damage parameter while the effect of aging on fatigue life was evaluated after obtaining the SED-Nf curves according to aging condition.

FE simulation of S-N curves for a riveted connection using two-stage fatigue models

  • Correia, Jose A.F.O.;de Jesus, Abilio M.P.;Silva, Antonio L.L.;Pedrosa, Bruno;Rebelo, Carlos;Calcada, Rui A.B.
    • Advances in Computational Design
    • /
    • 제2권4호
    • /
    • pp.333-348
    • /
    • 2017
  • Inspections of ancient metallic bridges have illustrated fatigue cracking in riveted connections. This paper presents a comparison between two alternative finite element (FE) models proposed to predict the fatigue strength of a single shear and single rivet connection. The first model is based on solid finite elements as well as on contact elements, to simulate contact between the components of the connection. The second model is built using shell finite elements in order to model the plates of the riveted connection. Fatigue life predictions are carried out for the shear splice, integrating both crack initiation and crack propagation lives, resulting from the two alternative FE models. Global fatigue results, taking into account several clamping stresses on rivet, are compared with available experimental results. Proposed comparisons between predictions and experimental data illustrated that the proposed two-stage model yields consistent results.

Fatigue analysis of partly damaged RC slabs repaired with overlaid UHPFRC

  • Deng, Pengru;Kakuma, Ko;Mitamura, Hiroshi;Matsumoto, Takashi
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.19-32
    • /
    • 2020
  • Due to repetitive traffic loadings and environmental attacks, reinforced concrete (RC) bridge deck slabs are suffering from severe degradation, which makes structural repairing an urgency. In this study, the fatigue performance of an RC bridge deck repairing technique using ultra-high performance fiber reinforcement concrete (UHPFRC) overlay is assessed experimentally with a wheel-type loading set-up as well as analytically based on finite element method (FEM) using a crack bridging degradation concept. In both approaches, an original RC slab is firstly preloaded to achieve a partly damaged RC slab which is then repaired with UHPFRC overlay and reloaded. The results indicate that the developed analytical method can predict the experimental fatigue behaviors including displacement evolutions and crack patterns reasonably well. In addition, as the shear stress in the concrete/UHPFRC interface stays relatively low over the calculations, this interface can be simply simulated as perfect. Moreover, superior to the experiments, the numerical method provides fatigue behaviors of not only the repaired but also the unrepaired RC slabs. Due to the high strengths and cracking resistance of UHPFRC, the repaired slab exhibited a decelerated deterioration rate and an extended fatigue life compared with the unrepaired slab. Therefore, the proposed repairing scheme can afford significant strengthen effects and act as a reference for future practices and engineering applications.

High-cycle fatigue characteristics of quasi-isotropic CFRP laminates

  • Hosoi, Atsushi;Arao, Yoshihiko;Karasawa, Hirokazu;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • 제16권2호
    • /
    • pp.151-166
    • /
    • 2007
  • High-cycle fatigue characteristics of quasi-isotropic carbon fiber reinforced plastic (CFRP) laminates [-45/0/45/90]s up to $10^8$ cycles were investigated. To assess the fatigue behavior in the high-cycle region, fatigue tests were conducted at a frequency of 100 Hz, since it is difficult to investigate the fatigue characteristics in high-cycle at 5 Hz. Then, the damage behavior of the specimen was observed with a microscope, soft X-ray photography and a 3D ultrasonic inspection system. In this study, to evaluate quantitative characteristics of both transverse crack propagation and delamination growth in the high-cycle region, the energy release rate associated with damage growth in the width direction was calculated. Transverse crack propagation and delamination growth in the width direction were evaluated based on a modified Paris law approach. The results revealed that transverse crack propagation delayed under the test conditions of less than ${\sigma}_{max}/{\sigma}_b$ = 0.3 of the applied stress level.