• 제목/요약/키워드: Fatigue cracking

검색결과 255건 처리시간 0.023초

FUNDAMENTAL UNDERSTANDING OF CRACKING AND BULGING IN COKE DRUMS

  • Penso, Jorge;Tsai, Chon
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.675-680
    • /
    • 2002
  • Cracking and bulging in welded and internally lined pressure vessels that work in thermal-mechanical cycling service have been well known problems in the petrochemical, power and nuclear industries. However, published literature and industry surveys show that similar problems have been occurring during the last 50 years. A better understanding of the causes of cracking and bulging causes is needed to improve the reliability of these pressure vessels. This study attempts to add information required for increasing the knowledge and fundamental understanding required. Typical examples of this problem are the coke drums in the delayed coking units refinery process. This case was selected for experimental work, field study and results comparison. Delayed coking units are among the refinery units that have higher economical yields. To shut down these units represents a high negative economical impact in refinery operations. Also, the maintenance costs associated with repairs are commonly very high. Cracking and bulging occurrences in the coke drums, most often at the weld areas, characterize the history of the operation of delayed coking units. To design and operate more robust coke drums with fewer problems, an improved metallurgical understanding of the cracking and bulging mechanisms is required. A methodology that is based field experience revision and metallurgical analyses for the screening of the most important variables, and subsequent finite element analyses to verify hypotheses and to rank the variables according to their impact on the coke drum lives has been developed. This indicated approach provides useful information for increasing coke drum reliability. The results of this work not only order the most important variables according to their impact in the life of the vessels, but also permit estimation of the life spans of coke drums. In conclusion, the current work shows that coke drums may fail as a combination of thermal fatigue and other degradation mechanisms such as: corrosion at high and low temperatures, detrimental metallurgical transformations and plastic deformation. It was also found that FEA is a very valuable tool for understanding cracking and bulging mechanisms in these services and for ranking the design, fabrication, operation and maintenance variables that affect coke drum reliability.

  • PDF

STS 316鋼 의 高溫低사이클 疲勞强度 와 破壞擧動 에 미치는 크리이프 - 疲勞 相互作용 의 影響 (Effect of creep-fatigue interaction on high temperature low cycle fatigue strength and fracture behavior of STS 316 stainless steels)

  • 오세욱;이규용;김중완;문무경
    • 대한기계학회논문집
    • /
    • 제9권2호
    • /
    • pp.140-149
    • /
    • 1985
  • 본 연구는 오오스테나이트계 STS 316 스테인레스강에 대하여 온도 550.deg. C의 대 기중에서, 변형율제어에 의한 인장-압축에 크리이프 유지시간을 갖는 고온저사이클 피 로시험을 하여 변형율폭 및 크리이프 유지시간이 피로수명에 미치는 영향과 파단면을 주사형 전자현미경으로 관찰하여 크리이프-피로 상호작용이 피로파단면에 미치는 크리 이프 효과를 실험 고찰하였다.

덧씌우기 아스팔트 포장체의 전단반사균옅 모사시험을 이용한 줄눈 실링재의 반사균열 지연효과 비교분석 (Evaluation of Sealing Effect on Performance of Overlaid Asphalt Pavement using Accelerated Reflection Cracking Test in Shear Mode)

  • 최동춘;이상범;이영관;김광우
    • 한국도로학회논문집
    • /
    • 제5권3호
    • /
    • pp.1-9
    • /
    • 2003
  • 본 논문은 시멘트 콘크리트 포장 위에 덧씌우기한 아스팔트 콘크리트 포장에서 발생하는 반사균열 제어를 위해 줄눈 실링재를 사용한 포장에서의 반사균열을 평가하기 위하여 수행되었다. 사용된 시험방법은 전단반사균열 모사실험 방법으로 실내에서 덧씌우기 아스팔트의 반사균열 저항성 시험을 위해 개발된 시험기법이다. 실험을 통하여 줄눈 실링재는 반사균열 제어에 효과가 있는 것으로 나타났다. 실링재 E를 사용하였을 때 피로수명은 가장 크게 나타났으나 수평변형은 상대적으로 크게 나타났고, B의 경우 수평변형은 가장 적게 나타났고 동적 안정도도 가장 크게 나타났다. 일반적으로 실링재의 인장강도가 높은 것일수록 혼합물의 반사균열저항성이 더 좋았다.

  • PDF

Consideration of the Frictional Force on the Crack Surface and Its Implications for Durability of Tires

  • Park, K.S.;Kim, T.W.;Jeong, H.Y.;Kim, S.N.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2159-2167
    • /
    • 2006
  • In order to find out a physical quantity which controls the fatigue life of a structure and to predict the fatigue life of tires, a finite element simulation methodology to use the cracking energy density (CED) and the virtual crack closure technique (VCCT) was proposed and applied to three different tires of a similar size. CED was calculated to predict the location of a crack initiation, and VCCT was used to obtain the strain energy release rate (SERR) at the tip of an initiated crack. Finite element simulations showed that SERR oscillated in the circumferential direction with its minimum occurring just before the contact zone and its maximum occurring just after the center of the contact zone, and SERR was affected significantly by the frictional force acting on the crack surface. In addition, a durability test was conducted to measure the fatigue life of the three tires. The comparison of SERR values with the test data revealed that the fatigue life increased as the amplitude of SERR decreased or as the R-ratio of SERR increased.

열분해 카본블랙을 이용한 아스팔트 바인더의 피로 및 저온 성능 평가 (Evaluation of Pyrolysis Carbon Black Modified Asphalt Binder for Fatigue and Low Temperature Crack)

  • 이동항;이관호
    • 한국산학기술학회논문지
    • /
    • 제14권5호
    • /
    • pp.2511-2515
    • /
    • 2013
  • 본 아스팔트 바인더의 피로균열 및 저온균열 특성을 개선하기 위하여 페타이어 열분해 공법의 부산물인 카본블랙을 이용하였다. 원아스팔트에 열분해 카본블랙 0%, 5%, 10%, 15% 및 20%를 혼합하였고, 동적전단유동기시험 및 처짐보유동기시험을 시행하였다. 열분해 카본블랙을 혼합한 아스팔트 바인더의 피로균열이 감소하는 경향을 나타내었고, 저온에서의 균열은 -12도까지는 개선되었으나, -18도에선 기준을 초과하는 것으로 나타났다.

불규칙하게 분포된 미소결함 사이의 응력간섭 및 피로균열 거동에 대한 실험적 연구 (1) (An Experimental Study on the Fatigue Behavior and Stress Interaction of Arbitrarily Located Defects (I))

  • 송삼홍;배준수;최병호
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1288-1296
    • /
    • 2000
  • In this study, fatigue crack behavior between arbitrarily located defects was investigated by experiment. Especially, stress interaction between micro hole defects and fatigue cracking, and fatigue crack initiation life following the variation of location of micro hole defects were considered. In addition, crack initiation position by micro hole stress interaction and the relationship between stress concentration factor and fatigue initiation life are studied in detail.

손상역학을 이용한 섬유강화 복합재료의 피로해석 (Fatigue Analysis of Fiber-Reinforced Composites Using Damage Mechanics)

  • 임동민;윤인수;강기원;김정규
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.112-119
    • /
    • 2006
  • Due to their intrinsic anisotropy, composite materials show quite complicated damage mechanism with their fiber orientation and stacking sequence and especially, their fatigue damage process is sequential occurrence of matrix cracking, delamination and fiber breakage. In the study, to propose new model capable of describing damage mechanism under fatigue loading, fatigue analysis of composite laminates based on damage mechanics, are performed. The average stress is disassembled with stress components of matrix, fiber and interlaminar interface through stress analysis. Each stress components are used to assess static damage analysis based on continuum damage mechanics (C.D.M.). Fatigue damage curves are obtained from hysteresis loop and assessed by the fatigue damage analysis. Then, static and fatigue damage analysis are combined. Expected results such as stress-cycle relation are verified by the experimental results of fatigue tests.

GFRP 복합구조의 피로신뢰성 해석모형에 관한 연구 (Fatigue Reliability Analysis Model for GFRP Composite Structures)

  • 조효남;신재철;이승재
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.29-32
    • /
    • 1991
  • It is well known that the fatigue damage process in composite materials is very complicated due to complex failure mechanisms that comprise debounding, matrix cracking, delamination and fiber splitting of laminates. Therefore, the residual strength, instead of a single dominant crack length, is chosen to describe the criticality of the damage accumulated in the sublaminate. In this study, two models for residual strength degradation established by Yang-Liu and Tanimoto-Ishikawa that are capable of predicting the statistical distribution of both fatigue life and residual strength have been investigated and compared. Statistical methodologies for fatigue life prediction of composite materials have frequently been adopted. However, these are usually based on a simplified probabilistic approach considering only the variation of fatigue test data. The main object of this work is to propose a fatigue reliability analysis model which accounts for the effect of all sources of variation such as fabrication and workmanship, error in the fatigue model, load itself, etc. The proposed model is examined using the previous experimental data of GFRP and it is shown that it can be practically applied for fatigue problems in composite materials.

  • PDF

Fatigue Properties of Sinter-hardened Fe-Ni-Mo-Cu Materials

  • Wang, Chonglin;Wang, Ping;Shi, Zaimin
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.383-384
    • /
    • 2006
  • Fe-4Ni-0.5Mo-1Cu powder was selected as raw material, pressed and sinter-hardened at $1135\;^{\circ}C$ for 30 min with rapid cooling. The density varies in the range of $7.24-7.29\;g/cm^3$. Its fatigue properties have been tested in axial loading of alternating tensile/compressive stress at R=-1 with a servo-pulse pump. The fatigue endurance limit was measured to be 260 MPa. The microstructure showed more homogeneous bainite and martensite. Fractography displayed the fatigue cracks initiated from the pore areas near the surface. A non-typical ductile fatigue striation was found. More dimples occurred on fracture surface due to the plastic deformation, which can prohibit cracking propagation and improve its fatigue properties.

  • PDF

고온수중에서 STS 304 스테인리스강의 응력부식균열 성장속도 (Stress Corrosion Crack Rate of STS 304 Stainless Steel in High Temperature Water)

  • 김정기
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.156-162
    • /
    • 2000
  • Sensitized STS 304 stainless steel crack growth rate(CGR) in high temperature water was investigated under trapezoidal wave loading test using fracture mechanics techniques. The CGR, due to stress corrosion cracking(SCC), were systematically measured as a function of the stress intensity factor and stress. holding time under trapezoidal wave loading. In high temperature water, CGR was enhanced by a synergistic effects in combination with an aggressive environment and mechanical damage. The CGR, $(da/dN)_{env}$ was basically described as a summation of the environmentally assisted crack growth rate $(da/dN)_{SCC}$, $(da/dN)_{CF}$ and fatigue crack growth rate in air $(da/dN)air,. The CGR, $(da/dN)_{env}$, increased linearly with increasing stress holding time. The CGR, $(da/dN)_{SCC}$ decreased linearly with increasing stress holding time. Fracture surface mode varied from trans-granular cracking to inter-granular cracking with increasing stress holding time.