• Title/Summary/Keyword: Fatigue crack propagation ratio

Search Result 194, Processing Time 0.022 seconds

A Study on the Fatigue Crack Growth Behavior in Residual Stress Field of the SS41 Welding Material (SS41 용접재의 잔류응력장내에서의 피로균열 성장거동에 관한 연구)

  • Choi, Byung-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • SS41 material is welded automatically and is investigated some effects of the welding residual stress on the growth and propagation of fatigue crack, so as to study the fatigue behaviour in the welding residual stress field. The summarized results are as follows; 1) In case of the load amplitude is constant, as the stress ration is changing to 0.1, 0.33 and 0.5 the propagation life is constant but the initiation life decreases. And than, when maximum load or minimum load is constant, s the stress ration increases the initiation life and propagation life. 2) It was shown that the fatigue crack propagation ratio da/dn was almost constant regardless of the stress ratio change at constant load amplitude and that the larger stress ratio, the slower was the fatigue crack propagation ratio. 3) The opening ratio U is influenced by $K_{max}$ but it isn't only the function of $K_{max}$ because data range is very large. 4) The fatigue life of the specimens on tensile compressive residual stress field was decreased and increased respectably more than that of the base metal.

Study on the Retardation Effect of Overload on the Corrosion Fatigue Crack Propagation Al-Alloy used for the Shipbuilding (과하중에 의한 선박용 알루미늄 합금재의 부식피로 파괴지연에 관한 연구)

  • Lim, Uh-Joh;Lee, Jong-Rark;Lee, Jin-Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.122-129
    • /
    • 1988
  • Recently with the rapid development in marine and shipbuliding industries such as marine structures, ship and chemical plants, there occurs much interest in the study of corrosion fatigue characteristics which was closed up an important role in mechanical design. In this study, the 5086 Al-alloy was tested by use of rotary bending fatigue tester. The retardation effect of overload on the corrosion fatigue crack propagation in sea environment was quantitatively studied. 1) Retardation effect of corrosion fatigue crack propagation is most eminent when overload ratio is 1.52, overload magnitude corresponds to about 77% and 55% of yield strength and tensile strength respectively. 2) After overload ratio 1.52 was used, retardation of corrosion fatigue crack growth rate is largely retarded and quasi-threshold stress intensity factor range($\Delta\textrm{K}_{th}$) appears. 3) According to m of experimental constant, retardation effect of corrosion fatigue crack propagation corresponds to about 25% of constant stress amplitude when overload ratio is 1.52. 4) When overload ratio 1.52 was used, retardation parameter (RP) decreases to about 0.43 and corrosion sensitivity (S)decreses to about 2.1.

  • PDF

A Study of Resistance of Fatigue Crack in Aluminum Alloy Plate Bonded with FRP (FRP 본딩한 알루미늄 판재의 피로균열 저항성에 관한 연구)

  • 윤한기;오세욱;박원조;허정원
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.117-126
    • /
    • 1994
  • APAL (Aramid Patched ALuminum alloy) was manufactured, which was a material that was consisting of a A12024-T3 aluminum alloy plate bonded to single-side of it with aramid/epoxy laminates. The aramid/epoxy laminates were bonded to it in condition of 1, 2 ply and fiber orientation of .+-.45, 0.deg./90.deg. Fatigue crack propagation tests were performed at stress ratio R-0.2, 0.5 with Al 2024-T3, APAL 45-1P, APAL 0/90-1P, APAL 45-2P, APAL 0/90-2P specimens to examine behavior of retardation in fatigue crack propagation. All the APAL specimens showed superior fatigue crack resistance. Number of cycle spended for crack to propagate from $a_{M}$=37 to $a_{M}$=65 mm in case of APAL 0/90-2P specimen was half that of Al 2024-T3 specimen. Fatigue crack propagation rate of APAL 0/90 specimens were retarded more compared to APAL 45 specimens and the amounts of retardation at R=0.5 were larger than that at R=0.2. It was found that the retardation in fatigue crack propagation was caused by intact fibers in the wake of crack.ack.

  • PDF

Fatigue Crack Propagation Behavior in Butt Weldment of SA106 Gr.C Main Steam Pipe Steel

  • Kim, Eung-Seon;Jang, Chan-Su;Kim, In-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.92-97
    • /
    • 1996
  • The fatigue crack propagation behavior in SA106 Gr.C main steam pipe weld joint was investigated in air environment. Crack growth rate tests were conducted on base metal and weld metal at load ratio of 0.1 and 0.3 and at frequency of 10Hz. The fatigue crack growth rates of the base metal and the weld metal were above the ASME reference line and the fatigue crack propagation rate of the weld metal was higher than those of the base metal. Fatigue crack growth rate increased with increasing the load ratio and the effect of the load ratio was more significant in the weld metal. The post weld heat treatment increased the fatigue crack growth rates of the base metal by reducing compressive residual stress and decreased those of the weld metal by reducing weld defects.

  • PDF

Effects of Load Ratio on Fatigue Crack Growth in a TMT Treated Al-Zn-Mg Alloy (가공열처리한 Al-Zn-Mg 합금의 피로균열 성장거동에 미치는 하중비의 영향)

  • Byun, E.S.;Kim, S.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.2 no.4
    • /
    • pp.19-26
    • /
    • 1989
  • Fundmental fatigue crack propagation tests with C-T type specimens were conducted at various load ratios (R) such as 0.1, 0.3 and 0.5 in T6 and Thermomechanically treated (TMT) conditions of 7039 Al alloy. Better mechanical properties from monotonic test as well as fatigue crack propagation were obtained by TMT process owing to uniform distribution of fine microstructures and non-existence of precipitation free zone (PFZ). Through the measurement of Kop and ${\Delta}K$ at various R the concept of effective stress intensity factor range ratio, U was reviewed to asses the load ratio effect on fatigue crack propagation. A relationship between U and variables such as ${\Delta}K$ and R was obtained empirically. This may enable us to predict ${\Delta}K_{eff}$ that is of critical importance for prediction of fatigue crack propagation rate.

  • PDF

Fatigue Crack Properties of Pressure Structural Steel at Low Temperature (저온환경에서 압력 구조용 강의 피로균열특성)

  • 최용범;박원조;이광영;허선철;김정호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.146-151
    • /
    • 2001
  • Low temperature fatigue crack propagation ratio and characteristics of the pressure structural steel which is used for the low temperature pressure vessels. Fatigue crack properties was studied at room temperature of $25^{\circ}C$ and low temperature ranges $-60^{\circ}C,\; -80^{\circ}C \;and\; -100^{\circ}C$ with stress ratio of R=0.05, 0.1, 0.3 in the logarithmic relationship between the fatigue crack propagation rate (da/dN) and stress intensity factor $\DeltaK$, in low temperature case the relationship was extend to the range of low crack propagation rate. The fractured specimens were examined by SEM tested. That results showed specimen failed at low temperature exhibit the quasi-cleavage fracture formation, however, considerable ductility proceed final fracture.

  • PDF

A Study on Fatigue Crack Propagation Behavior of Pressure Vessel Steel SA516/70 at High Temperature. (압력용기용 SA516/70 강의 고온피로균열 진전거동에 대한 연구)

  • 박경동;김정호;윤한기;박원조
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.147-153
    • /
    • 2000
  • The fatigue crack propagation behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, $150^{\circ}C$, $250^{\circ}C$ and $370^{\circ}C$ with stress ratio of R=0.1 and 0.3. The fatigue crack propagation rate da/dN related with the stress intensity factor range $\Omega\textrm{K}$ was influenced by the stress ratio within the stable growth of fatigue crack(Region II) with an increase in $\Omega\textrm{K}$. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and high temperatures are mainly explained by the crack closure and oxide-induced by high temperature.

  • PDF

A Study on Fatigue Crack propagation Behavior of Pressure Vessel Steel SA516/70 at High Temperature (압력용기용 SA516/70 강의 고온피로균열 진전거동에 대한 연구)

  • 박경동;김정호;윤한기;박원조
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.105-110
    • /
    • 2001
  • The fatigue crack propagation behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, 150$^{\circ}C $, 250$^{\circ}C $ and 370$^{\circ}C $ with stress ratio of R=0.1 and 0.3. The fatigue crack propagation rate da/dN related with the stress intensity factor range $\Delta K$ was influenced by the stress ratio within the stable growth of fatigue crack(Region II) with an increase in $\Delta K$. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and high temperature are mainly explained by the crack closure and oxide-induced by high temperature.

  • PDF

The effect of the excessive loading and welding anisotropy on the fatigue crack propagation behavior of TMCP steel for offshore structure (해양구조물용 TMCP강의 피로균열진전거동에 미치는 용접이방성 및 과대하중의 영향)

  • ;;三澤啓志
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.82-88
    • /
    • 2000
  • The effect of the welding for the offshore structure in the TMCP steel on the fatigue crack propagation rate and crack opening-and-closure behavior was examined. The welding anisotropy of the TMCP steel and crack propagation characteristics of the excessive loading were reviewed. (1) It seemed that a heat which was generated by the welding made a compressive residual stress over the base metal, so fatigue crack propagation rate was placed lower than in case of the base metal. (20 In the base metal, an effect of the anisotropy which has an effect of fatigue crack propagation rate of the excessive load and the constant amplitude laos was not found but in the welding material case, fatigue crack propagation rate of the excessive load in the specimen of the width direction was located in the retard side as compared with a specimen rolling direction. (3) A crack opening ratio of the used TMCP stel in this study was not changed after excessive loading but a retard phenomenon of crack propagation was observed. Consequently, it was thought that all of the retard phenomenon of crack propagation did not only a cause of the crack opening-and-closure phenomenon.

  • PDF

A Study on Fatigue Crack Propagation Analysis and Fatigue Strength Evaluation for Bulk Carrier (살물선의 피로균열 전파해석과 피로강도 평가에 대한 연구)

  • 엄동석;김충희
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.112-124
    • /
    • 1993
  • It has been reported that fatigue damage sometimes occurred at the stress concentrated and dynamic loaded structural members of bulk carrier. In this paper, studies on fatigue strength of hull structures are reviewed, and the program for evaluating fatigue strength is developed. And the fatigue crack initiation and propagation on the end part of cargo hold frame of bulk carrier were calculated by FEM stress analysis and the fatigue strength evaluation program. These method can be applied not only to the crack initiation life but also to crack propagation life for the hull structural members at the hull design stage and be effective as the guideline to prevent the crack initiation or to estimate the fatigue strength for repairing of the fatigue damaged structures of real ships.

  • PDF