• 제목/요약/키워드: Fatigue crack opening-closing behavior

검색결과 4건 처리시간 0.018초

2024-T3 A1 합금의 이방성이 피로균열진전속도와 정류거동에 미치는 영향 (Effect of Anisotropy on Fatigue Crack Propagation Rate and Arrest Behavior with 2024-T3 Alumunum Alloy)

  • 오세욱;김태형;오정종
    • 한국해양공학회지
    • /
    • 제7권1호
    • /
    • pp.124-132
    • /
    • 1993
  • In order to examine the effect of anisotropy and stress ratio on fatigue crack propagation rate and opening-closing behavior and also arrest behavior by single tension peak overload, the fatigue tests of constant amplitude atress and single tension peak overload adding to cycle of constant amplitude were carried out in stress ratio of -0.4, -0.2, and 0.4 with materials of T-L and L-T directions in 2024-T3 aluminum alloy plate. Crack opening-closing begavior were measured by the compliance method using COD gage and strain gage. In case of the crack opening-closing behavior was measured by strain gage, the effect of stress ratio is unchangeable. But in the case of COD gage, that is remarkably decreased. Fictitious effective stress intensity factor(U sub(f)) and effective stress intensity factor ratio(U) in L-T direction was higher than those in T-L direction and also threshold arrest overload ratio incrased as stress ratio decreased and that of T-L direction was higher than that in L-T direction.

  • PDF

A Study on the Determination of Closing Level for Finite Element Analysis of Fatigue Crack Closure

  • Choi, Hyeon-Chang
    • Journal of Mechanical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.401-407
    • /
    • 2000
  • An elastic-plastic finite element analysis is performed to investigate detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The finite element analysis performed under plane stress using 4-node isoparametric elements can predict fatigue crack closure behavior. The mesh of constant element size along crack surface can not predict the opening level of fatigue crack. The crack opening level for the constant mesh size increases linearly from initial crack growth. The crack opening level for variable mesh size, is almost flat after crack tip has passed the monotonic plastic zone. The prediction of crack opening level using the variable mesh size proportioning the reversed plastic zone size with the opening stress intensity factors presents a good agreement with the experimental data regardless of stress ratios.

  • PDF

과대, 과소 응력하에서의 피로크랙 발생거동 (피로한도 응력을 중심으로) (Behavior of Initiation and Propagation of Fatigue Crack under Periodic Overstressing (In the case of Fatigue Limit Stresses))

  • 송남홍;원시태
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1839-1851
    • /
    • 1991
  • Fatigue crack behavior is studied through the two-level rotary bending test with the deep non-through radial holed notch specimens of low carbon steels(SM22C). The main factors investigated are the effects of the damage zone size around crack tip and phenomena of closing or opening of the crack tip. Obtained results are summarized as follows. Fatigue crack behavior in second level stressing slightly lower than fatigue limit is closely related to the size of damage zone produced by the first level stress higher than fatigue limit and to the phenomena of crack closing and opening for the second level stress. The non-propagating crack limit condition depends upon the crack length l$_{1}$ propagated under the first level stress and the magnitude of second level stress .sigma.$_{2}$ lower than the fatigue limit. The non-propagating crack limit condition is expressed by following eq. $\sigma_2^{6.1}{\times}l_{1}=7.35{\times}10^{6}[(kg_{f}mm^{6.1}(mm)]$

순수 티타늄 판재의 피로균열 전파거동에 관한 연구 (A Study on Fatigue Crack Propagation Behavior with Pure-Ti Plate)

  • 오세욱;김태형;김득진;임만배
    • 한국해양공학회지
    • /
    • 제9권1호
    • /
    • pp.92-100
    • /
    • 1995
  • The effect of different anisotropy and stress ratio on fatigue crack propagation behavior was investigated under various stress ratio(R=-0.4, -0.2, 0.2, 0.2, 0.4) using pure titanium sheet used in aerospace, chemical and food industry. The rack closure behavior under constant load amplitude fatigue crack propagation test was examined. Fatigue crack propagation rate da/dN was estimated in terms of effective stress intensity factor range, $\Delta$K$_{eff}$, regardless of various stress ratio but was influenced by anisotropy. Also, it was found that the effect of anisotropy was considerably decreased but still not negligible when he da/dN was evaluated by a conventional parameter, $\Delta$$K_{eff}$/E and when the modified da/dN.$\sqrt{\varepsilon}_f$ was evaluated by $\Delta$$K_{eff}$/E. On the other hand, da/dN could be evaluated uniquely by effective new parameter, $\Delta$K$_{eff}$/$sigma_{ys}$, regardless of anisotropy, as int he following equation da/dN=C''[\frac{{\Delta}K_{eff}}{{\sigma}_{ys}}]^{n''}. And effective stress intensity factor range ratio, U was estimated by the following equation with respect to the ratio of reversed plastic zone size, $\Delta r_{p}$ to monotonic plastic zone size, $r_p$ regardless of stress ratio and anisotropy. U=-4.45$(\Delta r_{p}/r_{p})^{2}$+4.1$(\Delta r_{p}/r_{p})$+0.245_{p})$+0.245

  • PDF