• Title/Summary/Keyword: Fatigue crack

Search Result 1,961, Processing Time 0.024 seconds

A Study on the Prediction of Fatigue Damage in 2024-T3 Aluminium Alloy Using Neural Networks (신경회로망을 이용한 AI 2024-T3합금의 피로손상예측에 관한 연구)

  • Cho, Seok-Swoo;Jang, Deuk-Yul;Joo, Won-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.168-177
    • /
    • 1999
  • Fatigue damage is the phenomena which is accumulated gradually with loading cycle in material. It is represented by fatigue crack growth rate da/dN and fatigue life ratio $N/N_{f}$. Fracture mechanical parameters estimating large crack growth behavior can calculate quantitative amount of fatigue crack growth resistance in engineering material. But fatigue damage has influence on various load, material and environment. Therefore, In this study, we propose that artificial intelligent fatigue damage model can predicts fatigue crack growth rate da/dN and fatigue life ratio $N/N_{f}$ simultaneously using fracture mechanical and nondestructive parameters.

  • PDF

Small Fatigue Crack Measurement and Crack Growth Characteristics for Smooth and Notch Specimens (평활 및 노치재의 미소피로균열측정과 성장특성)

  • 이종형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2145-2152
    • /
    • 1993
  • The objective of this paper is to examine the detection limit, growth characteristics and notch curvature radius in short crack problem. Measurement techniques such as ultrasonic method and back-face strain compliance method were adopted. The fatigue crack growth rate of the short crack is slower than that of a long crack for a notched specimen. The characteristic of crack growth and crack closure is same as the case of a delay of crack growth caused by constant amplitude load for an ideal crack or single peak overload for a fatigue crack. The short crack is detected effectively by ultrasonic method. A short surface crack occurs in the middle of specimen thickness and is transient to a through crack depth is larger than the notch curvature radius.

The Correlation between Fatigue Fracture Crack Surface Friction and Crack Closure Effect in Crack Growth under Mixed-mode loading (혼합모드 하중 하에서의 균열성장 중 피로파단면 마찰과 균열닫힘효과의 상호관계)

  • Seo, Ki-Jeong;Song, Sam-Hong;Lee, Jeong-Moo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.214-219
    • /
    • 2004
  • Crack tip behavior of single mode loading condition(mode I)depend on tensile loading component but one of mixed mode loading condition(mode I+II) have influenced on shear loading component like the practical structure. Because crack closure is caused by shear loading component under mixed-mode loading a research on the behavior in the stage of crack initiation and propagation require to be evaluate about crack closure effect by fatigue crack surface friction. For that reasion we examined the behavior at the crack tip by direct measuring method. Measured behavior at the crack tip was analyzed through vector crack tip displacement. As a result, crack propafation equation was corrected by considering with crack closure effect. In addition we compared fatigue fracture crack surface and crack closure level.

  • PDF

A Study on the Fatigue Crack Propagation Behavior of Cr-Mo-V Alloy with Micro Defects at High Temperature. (미소 원공결함을 갖는 Cr-Mo-V강의 고온피로 크랙전파거동)

  • Song, Samhong;Kang, Myungsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.70-77
    • /
    • 1996
  • Fatigue tests were carried out at high temperature on a Cr-Mo-V steel in order to assess the fatigue life of components used in power plants. The characteristics of high temperature fatigue were divided in terms of cycle-dependent fatigue and time-dependent fatigue, each crack propagation rate was examined with respect to fatigue J-integral range, .DELTA. J$_{f}$and creep J-integral range, .DELTA. J$_{c}$. The fatigue life was evaluated by analysis of J-integral value at the crack tip with a dimensional finite element method. The results obtained from the present study are summarized as follows : The propagation characteristics of high temperature fatigue cracks are determined by .DELTA. J$_{f}$for the PP(tensile plasticity-compressive plasticity deformation) and PC(tensile plasticity - compressive creep deformation) stress waveform types, and by .DELTA. J$_{c}$for the CP(tensile creep- compressive plasticity deformation) stress waveform type. The crack propagation law of high temperature fatigue is obtained by analysis of J-integral value at the crack tip using the finite element method and applied to examine crack propagation behavior. The fatigue life is evaluated using the results of analysis by the finite element method. The predicted life and the actual life are close, within a factor of 2.f 2.f 2.

  • PDF

The Research of Fatigue-Crack Initiation and Propagation for S35C Steel (S35C강의 피로균열 발생 및 진전에 관한 연구)

  • 진영준
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.31-36
    • /
    • 2001
  • Surface crack growth characteristics and influence of the stress amplitude in rotary bending fatigue test were evaluated for annealed S35C steel, and than fractal dimensions of fatigue crack paths estimated using the box counting method. The following results that will be helpful to understand the fatigue crack growth mechanism were obtained. (1) Crack growth rate ds/dN and db/dN (s : half crack length at the surface crack, b : crack depth) depended on stress amplitude (${\Delta}{\sigma}/2$), stress intensity factor range (${\Delta}K_A, {\Delta}K_C$) and crack length. (2) At the effect area of 0.3 mm hole notch (s<0.5 mm) crack growth rate did not depend on these factors. (3) The fractal dimensions (D) increased with stress amplitude (${\Delta}{\sigma}/2$) but decreased with cyclic number.

  • PDF

A Study on the Determination of Closing Level for Finite Element Analysis of Fatigue Crack Closure

  • Choi, Hyeon-Chang
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.401-407
    • /
    • 2000
  • An elastic-plastic finite element analysis is performed to investigate detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The finite element analysis performed under plane stress using 4-node isoparametric elements can predict fatigue crack closure behavior. The mesh of constant element size along crack surface can not predict the opening level of fatigue crack. The crack opening level for the constant mesh size increases linearly from initial crack growth. The crack opening level for variable mesh size, is almost flat after crack tip has passed the monotonic plastic zone. The prediction of crack opening level using the variable mesh size proportioning the reversed plastic zone size with the opening stress intensity factors presents a good agreement with the experimental data regardless of stress ratios.

  • PDF

Effect of Indentation Residual Stresses on the Fatigue Crack Initiation Life (피로균열 발생수명에 대한 압입 잔류응력의 영향)

  • 이환우;강태일
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.158-165
    • /
    • 2004
  • Up to now, many crack repair techniques have been developed for inhibiting crack growth in structural components. However, the simplest way for inhibiting crack growth is to apply a indentation at the crack tip or at some distance ahead of the expected crack growth path so as to produce residual compressive stresses that can reduce the effective stresses around the crack tip. In spite of its importance to the aerospace industry, little attention has been devoted to evaluation of the indentation residual stress effect on the fatigue crack initiation life quantitatively. Therefore, in the present work, the magnitude and distribution of the indentation residual stresses were investigated in order to estimate the beneficial effect on fatigue crack initiation by using finite element method. Furthermore, to examine the validity of finite element analysis results, residual stress distribution in the indented specimen was measured by using X-ray diffraction technique, and fatigue crack behavior at fastener hole in aluminum alloy 7075-T6 before and after indentation processes was investigated.

Characteristic of Corrosion Fatigue of High Strength Steel for Marine Structures (해양 구조물용 고장력강의 부식피로특성)

  • ;T. Kubo;H. Misawa
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.409-412
    • /
    • 2003
  • Fatigue strength. especially crack initiation behavior of high strength steel under marine water environment was investigated. Marine structures were usually constructed by lot of weld joints and were designed by basis of the fatigue strength of weld joints. This study was carried out to mini. The fatigue initiation behavior is more important rather than crack propagation behavior under the design of marine structures, because it is very difficult to find out the crack propagation phenomena and repair the damaged part of welded joints in sea water Then, the new configuration specimen for fatigue crack initiation tests was proposed. Using this new specimen, it is easy to carry out the crack initiation tests with relatively low cycling loading and clearly find out a crack initiation fatigue life.

  • PDF

Fatigue Crack Behavior of Triple Piece Spot by Crack Tip Opening Angle of Welded Specimen (3중 점용접재의 귤열단 열림각(CTOA)을 이용한 피로균열거동)

  • Song, Sam-Hong;Joo, Dong-Ho;Yang, Yun-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.74-83
    • /
    • 2001
  • In this study, internal fatigue crack initiation and propagation behavior were investigated by triple piece spot welded specimen. To estimate fatigue life of the specimen varied with shape and thickness, Crack tip opening angle(CTOA) correlated with stress intensity factor was used as the stiffness parameter. The relation between fatigue life and CTOA can be arranged by the quantitative equation for each specimen by experiment. In addition, the variation of stress distribution was solved and the effect on fatigue crack behavior was examined by finite element method(FEM).

  • PDF

The Effect of Temperature, Frequency and Microstructure on Fatigue Crack Propagation in Ti-6A1-4V Alloy (Ti-6A1-4V 합금의 피로거동에 미치는 온도, 주파수 및 미세조직의 영향)

  • 김현철;김승한;임병수;김두현;이용태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.198-207
    • /
    • 1996
  • The effect of temperature, frequency and microstructure on fatigue crack propagation property of Ti-6A1-4V alloy has been investigated. The temperatures employed were room temperature, 20$0^{\circ}C$ and 40$0^{\circ}C$. The frequencies were 20Hz and 8 Hz. The microstructures tested were equiaxed and bimodal microstructures. Mechanical properties and fatigue crack growth rates were measured in different test conditions. From the experimental results, following conclusions were obtained. Bimodal microstructure showed superior fatigue crack growth resistance to equiaxed microstructure. Under all test conditions, fatigue crack growth rate increased with test temperature. Wine the frequency decreasing from 20Hz to 8Hz, fatigue crack growth rate increased.

  • PDF