• 제목/요약/키워드: Fatigue Threshold

Search Result 141, Processing Time 0.024 seconds

A Study on the Reliability Comparison of Median Frequency and Spike Parameter and the Improved Spike Detection Algorithm for the Muscle Fatigue Measurement (근피로도 측정을 위한 중간 주파수와 Spike 파라미터의 신뢰도 비교 및 향상된 Spike 검출 알고리듬에 관한 연구)

  • 이성주;홍기룡;이태우;이상훈;김성환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.380-388
    • /
    • 2004
  • This study proposed an improved spike detection algorithm which automatically detects suitable spike threshold on the amplitude of surface electromyography(SEMG) signal during isometric contraction. The EMG data from the low back muscles was obtained in six channels and the proposed signal processing algorithm is compared with the median frequency and Gabriel's spike parameter. As a result, the reliability of spike parameter was inferior to the median frequency. This fact indicates that a spike parameter is inadequate for analysis of multi-channel EMG signal. Because of uncertainty of fixed spike threshold, the improved spike detection algorithm was proposed. It automatically detects suitable spike threshold depending on the amplitude of the EMG signal, and the proposed algorithm was able to detect optimal threshold based on mCFAR(modified Constant False Alarm Rate) in the every EMG channel. In conclusion, from the reliability points of view, neither median frequency nor existing spike detection algorithm was superior to the proposed method.

Fracture Mechanics Characteristics of Wheel and Axle For High Speed Train (고속철도용 차륜과 차축의 파괴역학적 특성)

  • Kwon, Seok-Jin;Seo, Jung-Won;Lee, Dong-Hyung;Ham, Young-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.28-34
    • /
    • 2010
  • Railway wheel and axle is the most critical components in railway system. A wheel and axle failure can cause a derailment with its attendant loss of life and property. The service conditions of railway vehicles have become severe in recent years due to a general increase in operating speeds. Therefore, more precise evaluate of wheelset strength and safety has been desired. Fracture mechanics characteristics such as dynamic fracture toughness, fatigue threshold and charpy impact energy with respect to the tread, plate, disc hole of wheel and the surface of press fitted axle are evaluated. This paper describes the difference of fracture toughness, fatigue crack growth and fatigue threshold at the locations of wheel and axle. The results show that the dynamic fracture toughness, $K_{ID}$, is obviously lower than static fracture toughness, $K_{IC}$ and the fracture mechanics characteristics are difference to the location of wheel tread and hole.

A Study on the Shot Peening on the High Temperature Fatigue Crack Propagation (쇼트피이닝 가공된 스프링강의 고온 피로균열진전 평가)

  • 박경동;정찬기;하경준
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.264-268
    • /
    • 2001
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature, low temperature and high temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room, and high temperature at $25^{\circ}C,\; 50^{\circ}C, \;100^{\circ}C,\; 150^{\circ}C,\; and\; 180^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range $\DeltaK_{th}$ in the early stage of fatigue crack growth (Region I ) and stress intensity factor range $\Delta$K in the stable of fatigue crack growth (Region II) was decreased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

Crack Growth Analysis and Crack Arrest Design of Stiffened Panels(I) - Numerical Approaches to Crack Arrest Design Chart (보강판의 균열거동해석과 Crack Arrest 설계(I) - Crack Arrest 설계기준의 수치해석)

  • Rhee, Eui-Jong;Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.43-49
    • /
    • 2005
  • The purpose of a fatigue crack arrest design is to prevent a fatigue fracture of machine and structure resulted from unstable crack growth. In all cases of load transfer to second elements such as stringers, doublers or flanges, crack arrest is possible; arrest occurring when the fatigue crack reaches the second element. In the present work, a numerical analysis was carried out to estimate the effect of shape parameters on fatigue crack growth and arrest behavior of integrally stiffened panels. Based on these results, a set of fatigue crack arrest design chart is presented as "non-dimensional arrest load - thickness ratio" relationship.

  • PDF

A Study on the Fatigue Crack Propagation Characteristics for SUP9 Steel at Low Temperature (SUP9강의 저온피로크랙 전파특성에 관한 연구)

  • 박경동;박상오
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.80-87
    • /
    • 2002
  • In this study, CT specimens were prepared from spring steel(SUP9) which was used in suspension of automobile for room temperature and low temperature service. We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, ­3$0^{\circ}C$, ­5$0^{\circ}C$, ­7$0^{\circ}C$ and ­10$0^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range ΔK in the stable of fatigue crack growth (Region II) was decreased in proportion to descend temperature. It is assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

Evaluation of Fatigue Strength of Weld According to Load of Piping materials for Water Supply and Drainage (상.하수도 배관재 용접부의 하중에 따른 피로강도 평가)

  • Park, Keyung-Dong;Ryu, Hyoung-Ju
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.224-225
    • /
    • 2005
  • The lightness of components required on marine and shipbuilding industry is requiring high strength of components. In particular, fatigue failure phenomena, which happen in metal, bring on danger in human life and property. Therefore, antifatigue failure technology takes an important part of current industries. In this study, it was investigated about endurance and fatigue crack propagation rate of according to stress ratio of SMAW commonly using for welding structures in present. Fatigue crack propagation rate(da/dN) of low load(R=0.1) was lower than of high load(R=0.6) for piping weld. And in stage I, ${\Delta}$Kth, the threshold stress intensity factor of the weld under heavy load is higher than under small load. Fatigue life shows more improvement in the weld of stress ratio R=0.l than in the weld of stress ratio R=0.6.

  • PDF

An Effect of Temperature on the Fatigue Crack Propagation Behavior of Spring Steel for Vehicle (차량용 스프링강의 피로거동에 미치는 온도의 영향)

  • 박경동;류찬욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.83-90
    • /
    • 2004
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature and low temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$,$-100^{\circ}C$, and $-150^{\circ}C$, in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I)was increased but stress intensity factor range ΔK in the stable of fatigue crack growth (Region II) was decreased in proportion to decrease temperature. It is assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerably higher than that of room temperature in the early stage and stable of fatigue crack growth region.

An Evaluation on the Fatigue Strength Characteristics for the Shot Peening Spring Steel at Low Temperature (숏피닝 가공재의 저온 피로 강도 평가)

  • 박경동;권오헌
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • In this study, CT specimens were prepared from spring steel(SPS5) processed shot peening. The fatigue crack growth tests were carried out in the environment of the room temperature md low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$ $-100^{\circ}C$ and $-150^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\Delta$K in the stable of fatigue crack growth (Region II) were decreased in proportion to descend temperature. It was shown that the fatigue resistance characteristics and fracture strength at low temperature are considerable higher than those of mom temperature in the early stage and stable of fatigue crack growth region.

Effects of the Eccentric Exercise Inuced Delayed Muscle Soreness on Proprioception, Muscle Strength and Muscle Fatigue (원심성 저항운동으로 유발한 지연성근육통이 고유수용성감각, 근력 및 근피로도에 미치는 영향)

  • Choi Kyu-Hwan;Nam Sang-Nam
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.3
    • /
    • pp.176-191
    • /
    • 2004
  • The purpose of this study was to find the effects of the eccentric exercise induced delayed muscle soreness on proprioception, muscle strength, muscle fatigue, and muscle pain of the elbow flexor muscles. Thirty one healthy male subjects were participated in this study. Before resisted eccentric exercise of the elbow flexors and immediately and at 1, 3, 5, and 7 days post-exercise, pain threshold, proprioception, tension tracking, initial median frequency, and fatigue index were measured. Pain pressure threshold and visual analog scale (VAS) was used to measure muscle pain. Proprioception of the elbow joint was measured by using 3 dimension motion analysis system. Maximum isometric contraction was measured by using digital tensiometer. Electromyography and power spectrum analysis was used to measure initial median frequency (IMF) and fatigue index (FI). Immediately post-exercise, a significant decrease pain threshold was observed that continued to 5 days post-exercise. VAS score was significantly increased at 1 and 3 days post-exercise compared to that of immediately post-exercise. Maximum isometric contraction, IMF, tension tracking ability of the exercised elbow joint were significantly decreased at 1, 3, and 5 days post-exercise compared to that of pre-exercise. FI was significantly increased at 1 and 3 days post-exercise compared that of pre-exercise. Proprioception sense of exercised elbow joint was significantly decreased immediately and at 1, 3, and 5 days post-exercise compared to that of pre-exercise. Proprioception sense of the contralateral elbow joint was significantly decreased immediately post-exercise compared to that of pre-exercise. However, proprioception sense that was measured in close chain kinematic position was not significantly difference between pre-exercise and post-exercise. These results could be useful to determine the resume time for exercising and participating sports activities.

  • PDF

Crack Growth Analysis and Crack Arrest Design of Stiffened Panels(III) - Experimental Evaluation of Crack Arrest Design Chart (보강판의 균열거동해석과 Crack Arrest 설계(III) - Crack Arrest Design 차트의 실험평가)

  • Rhee, Eui-Jong;Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.42-48
    • /
    • 2006
  • In order to assess the validity of fatigue crack arrest design charts obtained from our previous numerical approach to fatigue crack arrest condition, an extensive fatigue crack growth/arrest test was performed using CT-type integrally stiffened panels. The results are presented as fatigue crack growth rate and non-dimensional crack length relationship, and these are compared with numerically simulated crack growth rates. The measured values of da/dN at the moment of fatigue crack arrest occurred in stiffened panels are good agreement with those numerically simulated crack growth rates.

  • PDF