• Title/Summary/Keyword: Fatigue StrengthWelding Residual Stress

Search Result 63, Processing Time 0.025 seconds

Effects of welding direction and residual stress on the Laser welds (용접방향에 따른 겹치기 레이저 용접부의 피로강도)

  • Cho, Sung-Kyu;Jang, Sang-Kyu;Seo, Jung;Kim, Jung-Oh
    • Laser Solutions
    • /
    • v.5 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • Finite element analysis and experiment were peformed to estimate the fatigue strength for the lap joint of laser weld. To consider quantitatively residual stress which effects on the fatigue strength of the lap joint of laser weld, after three dimensional modeling for the longitudinal and transverse direction, residual stress fields in the weldment were calculated using thermo-elastic-plastic finite element analysis, then the equivalent fatigue stress considering the residual stress was obtained. To ensure reliability of calculated fatigue strength, fatigue tests were performed. The calculated and experimental results showed a good agreement. The fatigue strength considering a residual stress was lower than that of without considering a residual stress in the lap joint of laser welding. The fatigue strength in the transverse direction was higher than that of longitudinal direction.

  • PDF

A Numerical Estimation of Fatigue Strength of Welded Steel Structures with Residual Stresses (용접 잔류음력을 고려한 강구조물의 피로강도평가)

  • Chung, Heung-Jin;Yoo, Byoung-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.265-270
    • /
    • 2007
  • According to previous research, welding-induced residual stresses in steel structures can significantly affect the fatigue behaviour. Usually, high tensile residual stresses up to the yield strength are conservatively assumed at the weld toes. This conservative assumption can result in misleading fatigue assessments. Thee welding-induced residual stresses need be known in advance for a reliable fatigue assessment, which becomes possible to an increasing extent by numerical welding simulation. In this study, a fatigue Analysis technique for steel structures with welding induced residual stress is presented. First, We calculate the history of temperature according with welding process. Secondly, residual stress with a welding thermal history was evaluated by non-linear thermal stress analysis and lastly, fatigue strength is estimated with modified Goodman equation which can consider the effect of mean stress level.

  • PDF

Prediction Model for Relaxation of Welding Residual Stress under Fatigue Loads (피로하중하 용접잔류응력 이완 추정모델)

  • 한승호;신병천
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.84-90
    • /
    • 2002
  • The strength and the life of welded components are affected extensively by the residual stresses distributed around their weldments not only under static loads, but also fatigue loads. The residual stress can be superimposed with externally applied loads, so that unexpected deformations and failures of members will be occurred. These residual stresses are not kept constant, but relaxed or redistributed during in service. Under static loads the relaxation takes place when the external stress superimposed with the residual stress exceeds locally the yield stress of material used. It is shown that under fatigue loads the residual stress is considerably relieved by the first or flew cycle loading, and then gradually relaxed with increasing loading cycles. In this study the phenomenon and mechanism of the stress relaxation by mechanical means were investigated and a model to predict quantitatively the residual stress relaxation for the case of static and fatigue loading condition was proposed.

Fatigue Life Prediction of Weldment with Damage Mechanics (손상역학을 이용한 용접부의 피로수명예측)

  • Chung, Heung-Jin;Yoo, Byoung-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.60-64
    • /
    • 2008
  • According to previous research, welding-induced stress in steel structures can significantly affect the fatigue behaviour; it produces initial damage of weldiug part of structure locally and residual stresses reduce the fatigue strength after welding precess. In this study, through continuum damage mechanics, we can estimate the weldiug damage using the stress and strain history during welding process and the effect of welding residual stress for assessment of fatigue life. The variation of welding-induced stresses and strains need be traced precisely in advance for a reliable weldiug damage assessment. In this study, a damage and fatigue analysis techniques for steel structures with welding-induced residual stress are presented. First, We calculate the history of temperature according with welding process. And residual stress with a welding thermal history was evaluated by non-linear thermal stress analysis. Secondly, welding damage and fatigue life are estimated with kinetic damage law.

  • PDF

The Static Overload Effect Estimations on Fatigue Strength by The Measurement of Local Strain Variation at The Weldment Toe (용접 토우부의 국부적 변형률 측정을 통한 용접부의 정적 과하중에 따른 피로강도의 변화 평가)

  • Lee, Hyun-Woo;Kim, Ju-Hwan;Kim, Hyun-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.59-66
    • /
    • 2001
  • Fatigue strength of the welding structure is governed by the residual stress at the weldment toe and static tensile overloads were known as relieving the residual stresses. In this study, static tensile overloads were applied to the welding structures which caused the relief of residual stresses. The amount of residual stress relief was found as proportional to the change of fatigue limit at the given conditions. Based on the fact of the proportionality between the change of fatigue limit and that of residual stress, simple measurement technique is proposed. Modified stress-life curves base on proposed technique gave good agreement with test results.

  • PDF

A Quantitative Estimation of Welding Residual Stress Relaxation for Fatigue Strength Analysis (피로강도해석을 위한 용접잔류응력 이완의 정량적 평가)

  • Han, Seung-Ho;Lee, Tak-Kee;Shin, Byung-Chun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2018-2025
    • /
    • 2002
  • It is well known that the strength and the fatigue life of welded steel components are affected extensively by welding residual stresses distributed around their weldments under not only monotonic but also cyclic loads. The externally applied loads are to be superimposed with the welding residual stresses, so that unexpected deformations and failures of the components might occur. These residual stresses are not kept constant, but relaxed or redistributed during in service. Under monotonic loads the relaxation takes place when the sum of external and welding residual stress exceeds locally the yield stress of material used. By the way, it is shown that under cyclic loads the welding residual stress is considerably relieved by the first or the early cycles of loads, and then gradually relaxed with increasing loading cycles. Although many investigations in this field have been carried out, the phenomenon and mechanism of the stress relaxation are still not clear, and there are few comprehensive models to predict amount of relaxed welding residual stress. In this study, the characteristics of the welding residual stress relaxation under monotonic and cyclic loads were investigated, and a model to predict quantitatively amount of welding residual stress relaxation was proposed.

Numerical Analysis of Residual Stress Redistribution due to Fatigue Crack Propagation of Weld Zone (용접부의 균열진전에 따른 잔류응력 재분포 해석)

  • 이동형;구병춘
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.225-231
    • /
    • 2002
  • The problem of welding stresses and fatigue behavior is the main concerns of welding research fields. The residual stresses and distortion of structures by welding is exert negative effect on the safety of mechanical structures. That is, expansion of material by high temperature and distortion by cooling during welding process is caused of tensile and compressive residual stresses on welding material, and this residual stresses reduce fracture and fatigue strength of welding structures. The accurate prediction of residual stress and redistribution due to fatigue crack propagation of weld zone is very important to improve the quality of weldment. In this study, a finite element modeling technique is developed to simulate the redistribution of residual stresses due to fatigue crack propagation of weld zone.

  • PDF

Fatigue Design of Spot Welded Lap Joint Considered Residual Stress (잔류응력을 고려한 점용접이음재의 피로설계)

  • Son, Il-Seon;Bae, Dong-Ho;Hong, Jeong-Gyun;Lee, Beom-No
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.743-751
    • /
    • 2000
  • Because welding residual stress is formidable result in electric resistance spot welding process, and it detrimentally affect to fatigue crack initiation and growth at nugget edge of spot welded la p joints, it should be considered in fatigue analysis. Thus, accurate prediction of residual stress is very important. In this study, nonlinear finite element analysis on welding residual stress generated in process of the spot welding was conducted, and their results were compared with experimental data measured by X-ray diffraction method. By using their results, the maximum principal stress considered welding residual stress at nugget edge of the spot welded lap joint subjected to tension-shear load was calculated by superposition method. And, the $\Delta$P- $N_f$ relations obtained through fatigue, tests on the IB-type spot welded lap joints was systematically rearranged with the maximum principal stress considered welding residual stress. From the results, it was found th2at fatigue strength of the IB-type spot welded lap joints could be systematically and more reasonably rearranged by the maximum principal stress($\sigma$1max-res considered welding residual stress at nugget edge of the spot welding point.

Numerical Analysis of Welding Residual Stresses for Ultra-thick Plate of EH40 TM and API 2W Gr.50 Steel Joined by Flux Core Arc Welding (EH40과 API2W강재의 극 후판재 다층 FCAW 버트 접합부 잔류응력해석)

  • Hwang, Se-Yun;Lee, Jang-Hyun;Yang, Young-Sik;Lee, Sung-Je;Kim, Byung-Jong
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.65-72
    • /
    • 2010
  • Some structural members of large-scale marine vessels such as large-scale offshore structures and very large container ships are assembled by very thick plates of which thickness exceeds 60mm. Also, high-tensile steels have been selected to meet the required structural strength and fatigue strength. Generally, multi-pass welding method such as FCA(Flux-Core Arc) welding has been used to join the thick plates. Considering the welding residual stresses, fatigue strength of the welded joints of thick plates should be assured since the residual stress influences the fatigue strength. This paper presents a numerical procedure to investigate the residual stress of structure joined by multi-pass FCA welding so that it can be incorporated into the fatigue strength assessment considering the effect of welding residual stress. The residual stress distribution is also measured by X-Ray diffraction method. The residual stress obtained by the computational model also has been compared with that of experiment. The results of FEA are in very good agreement with the experimental measurements.

The Effect of Ultrasonic Impact Treatment(UIT) for Fatigue Life of Weldment (Ultrasonic Impact Treatment(UIT)효과가 용접재의 피로수명에 미치는 영향)

  • Song, Jun-Hyouk;Lee, Hyun-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.38-45
    • /
    • 2010
  • Welding structures are designed to endure its expected life. The most important factors are life. Especially on welded structure, fatigue strength is critical. So this study performed a research on Box and T shape weldment specimen to examine the influence of welding type. In this experiment, the results indicate Box shape was available in more than T shape. Fatigue tests were performed to evaluate the fatigue strength of the both as-welded and statically pre-loaded specimens by 3 point bending load. Fatigue life can be improved by using Ultrasonic Impact Treatment(UIT) effect. Ultrasonic Impact Treatment(UIT) is excellent for eliminating the tensile residual stresses and generating compressive residual stresses which elevate fatigue strength of welded structures. Also, this shows that welding part has better fatigue life and welding was performed well. In this study, to evaluate the Ultrasonic Impact Treatment(UIT) effect, for welding structure, the experiment was conducted at various levels of stress range between 100MPa and 500MPa. From the test results, it was indicated that fatigue performance was improving by Ultrasonic Impact Treatment(UIT)