• Title/Summary/Keyword: Fatigue Fracture Surface

Search Result 345, Processing Time 0.02 seconds

A Study on Crystalline Structural Variations of the Rigid Spherical-Tip scratch on the Surface of α-Titanium substrates via Molecular Dynamics Simulations (α-티타늄 평판표면에서 강체 구형팁의 스크래치로 인한 내부 결정구조 특성 변화에 대한 연구)

  • Yeri Jung;Jin Ho Kim;Taeil Yi
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.167-172
    • /
    • 2023
  • Titanium alloys are widely recognized among engineering materials owing to their impressive mechanical properties, including high strength-to-weight ratios, fracture toughness, resistance to fatigue, and corrosion resistance. Consequently, applications involving titanium alloys are more susceptible to damage from unforeseen events, such as scratches. Nevertheless, the impact of microscopic damage remains an area that requires further investigation. This study delves into the microscopic wear behavior of α-titanium crystal structures when subjected to linear scratch-induced damage conditions, utilizing molecular dynamics simulations as the primary methodology. The configuration of crystal lattice structures plays a crucial role in influencing material properties such as slip, which pertains to the movement of dislocations within the crystal structure. The molecular dynamics technique surpasses the constraints of observing microscopic phenomena over brief intervals, such as sub-nano- or pico-second intervals. First, we demonstrate the localized transformation of lattice structures at the end of initialization, indentation, and wear processes. In addition, we obtain the exerted force on a rigid sphere during scratching under linear movement. Furthermore, we investigate the effect of the relaxation period between indentation and scratch deformation. Finally, we conduct a comparison study of nanoindentation between crystal and amorphous Ti substrates. Thus, this study reveals the underlying physics of the microscopic transformation of the α-titanium crystal structure under wear-like accidental events.

The quality improvement study on the crack of heat exchanger lubricating oil port in military aircraft (군용항공기 열교환기 윤활유 유입포트 균열개선 연구)

  • Park, Sung-Jae;Choi, Jae-Ho;Choi, Gil-Gyu;Lee, Dong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.164-172
    • /
    • 2020
  • The fuel oil/heat exchanger installed in military aircraft is a device that cools the lubricant oil supplied to other devices, such as an AMAD, and a hydraulic pump using the low temperature of the fuel is cracked at the AMAD lubricant inlet port. If a crack in the heat exchanger occurs, the lubricant oil supplied to other equipment is not cooled. Therefore, the flight can no longer be performed. In this study, non-destructive inspection and microscopic examination of the fracture surface of the oil port were performed to analyze the crack tendency. The oil pipe connected to the oil port is a titanium pipe, which is fastened with over torque and has been identified as the leading cause of heat exchanger oil port cracks. In addition, it was verified as the main reason for cracking by finite element analysis. The material and diameter of the pipe were changed to improve this defect, and the applied torque was adjusted. In addition, the bending value of the pipe was adjusted to minimize the fatigue accumulation due to pulsating pressure. As a result, no cracks occurred on the heat exchanger via the ground test after the installation of an improved pipe under the same conditions.

The Study on Improvement about Structural Integrity of Main Landing Gear for Rotorcraft (회전익 항공기 구조건전성 향상을 위한 주륜착륙장치 결함 개선연구)

  • Jang, Min-Uk;Lee, Yoon-Woo;Seo, Young-Jin;Ji, Sang-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.459-467
    • /
    • 2019
  • The landing gear is a component that requires a high degree of safety to protect the lives of rotary-wing aircraft and boarding personnel, absorbing the impact on transfer/landing and supporting the fuselage during taxiing and mooring on the ground. In particular, the wheel landing gear supporting the aircraft fuselage absorbs most of the shock from the ground through the shock absorber and tires. This ensures the safety of the pilot on board the aircraft and satisfies the operational capability of the soldiers between missions. During the operation of a rotary-wing aircraft, a number of piston pins, which are a component of the right main wheel landing gear, were found to be broken. Therefore, this study examined the root cause of the piston pin crack phenomenon found in the main wheel landing gear. For this purpose, various causes were identified from fracture surface analysis of a flight test. In particular, the possibility of cracking was analyzed based on the influence on the fastening torque with the drag beam component applied to the piston pin at the time of development. This ensures the fatigue life and structural integrity.

A study on Crack Healing of Various Glassy Polymers (part I) -theoretical modeling- (유리질 중합체의 균열 Healing에 관한 연구 (제1보) -이론 모델링-)

  • Lee, Ouk-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.1
    • /
    • pp.40-49
    • /
    • 1986
  • Crack, craze and void are common defects which may be found in the bulk of polymeric materials such as either themoplastics or thermosets. The healing phenomena, autohesion, of these defects are known to be a intrinsic material property of various polymeric materials. However, only a few experimental and theoretical investigations on crack, void and craze healing phenomena for various polymeric materials have been reported up to date [1, 2, 3]. This may be partly due to the complications of healing processes and lacking of appropriate theoretical developments. Recently, some investigators have been urged to study the healing phenomena of various polymenic materials since the significance of the use of polymer based alloys or composites has been raised in terms of specific strength and energy saving. In the earlier published reports [1, 2, 3, 4], the crack and void healing velocity, healing toughness and some other healing mechanical and physical properties were measured experimentally and compared with predicted values by utilizing a simple model such as the reptation model under some resonable assumptions. It seems, however, that the general acceptance of the proposed modeling analyses is yet open question. The crack healing processes seem to be complicate and highly dependent on the state of virgin material in terms of mechanical and physical properties. Furthermore, it is also strongly dependent on the histories of crack, craze and void development including fracture suface morphology, the shape of void and the degree of disentanglement of fibril in the craze. The rate of crack healing may be a function of environmental factors such as healing temperature, time and pressure which gives different contact configurations between two separated surfaces. It seems to be reasonable to assume that the crack healing processes may be divided in several distinguished steps like stress relaxation with molecular chain arrangement, surface contact (wetting), inter- diffusion process and com;oete healing (to obtain the original strength). In this context, it is likely that we no longer have to accept the limitation of cumulative damage theories and fatigue life if it is probable to remove the defects such as crack, craze and void and to restore the original strength of polymers or polymer based compowites by suitable choice of healing histories and methods. In this paper, we wish to present a very simple and intuitive theoretical model for the prediction of healed fracture toughness of cracked or defective polymeric components. The central idea of this investigation, thus, may be the modeling of behavior of chain molecules under healing conditions including the effects of chain scission on the healing processes. The validity of this proposed model will be studied by making comparisons between theoretically predicted values and experimentally determined results in near future and will be reported elsewhere.

  • PDF

THE EFFECT OF CYCLIC LOADING ON THE RETENTIVE STRENGTH OF FULL VENEER CROWNS (반복 하중이 Full veneer crown의 유지력에 미치는 영향에 관한 연구)

  • Kim, Ki-Youn;Lee, Sun-Hyung;Chung, Hun-Young;Yang, Jae-Ho;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.583-594
    • /
    • 2000
  • Dislodgement of a crown or extension bridge and the loosening of a retainer of a bridge is a serious clinical problem in fixed restoration. Generally these problems are considered to be associated with deformation of the restoration. During biting, the restoration is subjected to complex forces and deforms considerably within the limit of its elasticity. Deformation of the restoration under the occlusal force induces excessive stress in the cement film, which then leads to the cement fracture. Such a fracture may eventually cause loss of the restoration. Because most of the past retention tests for full veneer crown were done without fatigue loading, they were not exactly simulating intraoral environment. And the purpose of this study was to evaluate the effect of cyclic cantilever loading on the retentive strength of full veneer crowns depending on different type of cements and taper of prepared abutment. Steel dies with $8^{\circ}\;or\;16^{\circ}$ convergence angle were fabricated through milling and crowns with the same method. These dies and crowns were divided into 8 groups. Group 1 : $16^{\circ}$ taper die, cementation with zinc phosphate cement, without loading Group 2 : $16^{\circ}$ taper die, cementation with zinc phosphate cement, with loading Group 3 : $8^{\circ}$ taper die, cementation with zinc phosphate cement, without loading Group 4 : $8^{\circ}$ taper die, cementation with zinc phosphate cement, with loading Group 5 : $16^{\circ}$ taper die, cementation with Panavia 21, without loading Group 6 : $16^{\circ}$ taper die, cementation with Panavia 21, with loading Group 7 : $8^{\circ}$ taper die, cementation with Panavia 21 without loading Group 8 : $8^{\circ}$ taper die, cementation with Panavia 21, with loading After checking the fit of die and crown, the luting surface of dies and inner surface of crowns were air-abraded for 10 seconds. The crowns were cemented to the dies, with cements mixed according to the manufacturer's recommendations. A static load of 5kg was then applied for 10 minutes with static loading device. Twenty-four hours later, group 1, 3, 5, 7 were only thermocycled, group 2, 4, 6, 8 were subjected to cyclic loading after thermocycling. Retentive tests were performed on the Instron machine. From the finding of this study, the following conclusions were obtained 1. Panavia 21 showed significantly higher retentive strength than zinc phosphate cement for all groups (p<0.05). 2. There was a significant difference in the retentive strength between $8^{\circ}\;and\;16^{\circ}$ taper for zinc phosphate cement(p<0.05), but no significant difference for Panavia 21 (p>0.05). 3. Cyclic loading significantly decreased the retentive strength for all groups(p<0.05). 4. For zinc phosphate cement, there was 35% reduction of the retentive strength after loading in the $16^{\circ}$ taper die, 25% in the $8^{\circ}$ taper die, and for Panavia 21, 21% in the $16^{\circ}$ taper die, 18% in the $8^{\circ}$ taper die.

  • PDF