• Title/Summary/Keyword: Fatigue Fracture Surface

Search Result 345, Processing Time 0.031 seconds

Assessment for Propagation Behavior and Fracture Surface of Mixed-mode Fatigue Crack by Fracture Surface-Roughness Induced Crack Closure (파면거칠기 유도 균열닫힘에 의한 혼합모드 피로균열의 전파거동 및 파면에 대한 평가)

  • Seo, Ki-Jeong;Lee, Jeong-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.432-440
    • /
    • 2007
  • In this study, we have investigated the closure behavior of fatigue cracks in SAPH440 steel plates under a mixed-mode I+II loading. A crack image capturing system as a direct measuring method was used to measure the closure levels at a crack tip. The crack closure levels in the fluctuation and stable sections were increased with the increase of the mode mixture ratio. The mode mixture ratio independent fatigue crack propagation rates equation was calculated by considering mixed-mode crack closure levels. The equation was examined according to the application method of crack opening ratio. The fracture surface analysis by C-scan method was also performed in order to investigate the closure mechanism and propagation mode of crack under the mixed-mode I+II loading. The crack closure under the mixed mode I+II is confirmed as a surface roughness closure by the quantitative analysis of fracture surface using the proposed surface roughness parameter.

An Evaluation of Bending Fatigue Strength for Cold Forged Bevel Gear (냉간단조 베벨기어의 굽힘피로강도 평가)

  • 김재훈;사정우;김덕회;이상연
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2000
  • Gears are the most commonly used parts in automotive and industrial applications. One of most common modes of gear failures is tooth breakage, which is usually produced by the bending fatigue failure. It is important to manufacture the gears which can withstand the applied stresses in view of safety and economic requirement. This paper deals with bending fatigue strength for cold forged bevel gear. Especially, to compare fatigue characteristics for manufacturing processes difference, bending fatigue tests of bevel gears made by three different processes respectively. Results indicate that the fatigue strength of bevel gear is improved by cold forging process. Intergranular fracture is found on fatigue fracture surface, and dimples are observed on final fracture surface. The fatigue failure cannot be considered as a deterministic quantity, but must be characterized statistically. This study proposes a method to estimate bending fatigue lift of the bevel gear using the probability-load-life and Weibull analysis.

  • PDF

EFFECT OF SURFACE DEFECTS AND CROSS-SECTIONAL CONFIGURATION ON THE FATIGUE FRACTURE OF NITI ROTARY FILES UNDER CYCLIC LOADING (전동식 니켈 티타늄 파일의 표면 결함 및 단면 형태가 반복응력 하에서 피로 파절에 미치는 영향)

  • Shin, Yu-Mi;Kim, Eui-Sung;Kim, Kwang-Man;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.3
    • /
    • pp.267-272
    • /
    • 2004
  • The purpose of this in vitro study was to evaluate the effect of surface defects and cross-sectional configuration of NiTi rotary files on the fatigue life under cyclic loading. Three NiTi rotary files ($K3^{TM},{\;}ProFile^{\circledR},{\;}and{\;}HERO{\;}642^{\circledR}$) with #30/.04 taper were evaluated. Each rotary file was divided into 2 subgroups : control (no surface defects) and experimental group (artificial surface defects), A total of six groups of each 10 were tested. The NiTi rotary files were rotated at 300rpm using the apparatus which simulated curved canal (40 degree of curvature) until they fracture. The number of cycles to fracture was calculated and the fractured surfaces were observed with a scanning electron microscope. The data were analyzed statistically. The results showed that experimental groups with surface defects had lower number of cycles to fracture than control group but there was only a statistical significance between control and experimental group in the $K3^{TM}$ (p<0.05), There was no strong correlation between the cross-sectional configuration area and fracture resistance under experimental conditions. Several of fractured files demonstrated characteristic patterns of brittle fracture consistent with the propagation of pre-existing cracks. This data indicate that surface defects of NiTi rotary files may significantly decrease fatigue life and it may be one possible factor for early fracture of NiTi rotary files in clinical practice.

Fracture Probability Properties of Torsion Fatigue of STS304 Steel (STS304강의 비틀림 피로파괴 확률특성)

  • Park, Dae-Hyun;Jeong, Soon-Ug
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.201-206
    • /
    • 2003
  • This study is test for STS304 specimen using bending and torsion state. Rounded specimen and notched specimen including fracture surface investigation was comparatively experimented, fatigue life according to degree of surface finishing was examined. Fatigue fracture probability of notched canilever specimens were predicted by P-S-N curve, median rank and Weibull distribution. And at the relation with the rotational speed and stress, the fatigue life of the test specimen was higher at high speed than low speed If summarize STS304 torsion result of fatigue test, is as following. Fatigue life prediction was available by Weibull statistics distribution, and 50% breakdown probability correlation equation was appeared as following.

  • PDF

Fracture and Wear Characteristics of Al-Si alloy used for Compressor (컴프레서용 Al-Si 합금의 파괴 및 마모 특성)

  • 김재훈;김덕회
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.141-149
    • /
    • 1999
  • Fracture, fatigue and wear characteristics of Al-Si alloy used for compressor are experimentally studied. Plane strain fracture toughness test is carried out using three point bending specimen. Fatigue test is performed under constant loading condition and wear test is carried out as a function of sliding velocity and applied load. To obtain the crack propagation characteristics and wear mechanism of Al-Si alloy, fracture and worn surfaces are investigated using SEM. It is verified that fracture and fatigue strength of Al-Si alloy are improved by the fine microstructure of alloy. The wear behavior and specific wear amount of Al-Si alloy are not dependent on the microstructure but on a function of the silicon content. Anodizing on the surface of Al-Si alloy, surface hardness and wear characteristics are improved.

A Study on the Fracture Surface Growth Behavior of Steel used for Frame of Vehicles by Corrosion Fatigue (자동차 프레임용 강재의 부식피로에 의한 파면성장거동에 관한 연구)

  • Lee, Sang-Yoel;Im, Jong-Mun;Im, U-Jo;Lee, Jong-Rak
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.61-70
    • /
    • 1992
  • In this study, corrosion fatigue test of SAPH45 steel was performed by the use of plane bending fatigue tester in marine environment and investigated fracture surface growth behavior of base metal and heat affected zone corrosion fatigue. The main results obtained are as follows: 1) Fracture surface growth of heat affected zone (HAZ) is delayed more than that of base matel (BM), and they tend to faster in seawater than in air. 2) Corrosion sensitivity to corrosion fatigue life of HAZ is more susceptible than that of BM. 3)In the case of the corner crack by corrosion fatigue, the correlation between the propagation rate of fracture surface area(dA/dN) and stress intensity factor range(ΔK) for SAPH45 are applied to Paris rule as follows: dA/dN=C(ΔK) super(m) where m is the slope of the correlation, and is about 6.60-6.95 in air and about 6.33-6.41 in seawater respectively.

  • PDF

The Study on the Quantitative Analysis of Accident Fracture Surface by X-ray Diffraction (X-ray 회절에 의한 사고파면의 정량적 해석에 관한 연구)

  • Choi, Seong-Dae;Kweon, Hyun-Kyu;Cheong, Seon-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.117-123
    • /
    • 2002
  • X-ray diffraction observation of fracture surfaces yields useful information to analyze the causes of failure accidents of engineering structures. This experimental technique, named X-ray fractography, has been developed especially in metal and mechanical engineering fields. The distributions of the residual stress and the half value breadth of diffraction profiles beneath the fatigue fracture surface were measured with SNCM 439, HT100 and Ti-6Al-4V alloy. The size of the maximum plastic zone was successfully determined on the basis of the measured distributions. This size was correlated to maximum stress intensity factor. The distributions of the half value breadth of diffraction profiles on the fatigue fracture surfaces were measured with SNCM 439. HT100. The equations of x-ray parameter distribution were possible to estimated fracture parameters of fatigue fracture surfaces.

Fracture Probability Properties of Pure and Cantilever Bending Fatigue of STS304 Steel (STS304강의 순수 및 외팔보형 굽힘 피로에 대한 파괴확률 특성)

  • Roh, Sung-Kuk;Park, Dae-Hyun;Jeong, Soon-Uk
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.199-204
    • /
    • 2001
  • Big accidents of flyings, vessel, subways, gas equipments, buildings and bridge happens frenquently. Therefore many people are suffering harm of property. The destruction cause of macaine components is almost accused by fatigue. This study is test for STS304 specimen using pure and cantilever bending state. Rounded specimen and notched specimen including fracture surface investigation was comparatively experimented, fatigue life according to degree of surface finishing was examined. Fatigue fracture probability of notched canilever specimens were predicted by P-S-N curve, median rank and Weibull distribution. And at the relation with the rotational speed and stress, the fatigue life of the test specimen was higher at high speed than low speed.

  • PDF

A Study on the X-Ray Fractography of Turbine Blade under Fatigue Load (피로하중을 받는 터빈 블레이드의 X선 프랙토그래픽에 관한 연구)

  • Hong, Soon-Hyeok;Lee, Dong-Woo;Cho, Seok-Swoo;Joo, Won-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.65-71
    • /
    • 2002
  • Turbine blade is subject to cyclic bending force by steam pressure. Stress analysis by fractography is already established technology as means far seeking cause of fracture and has been widely employed. In the X-ray frctography, plastic deformation and residual stress near the fracture surface can be determined and information of internal structure of material can be obtained. Therefore, to find a fracture mechanism of torsion-mounted blade in nuclear power plant, based on the information from the fracture surface obtained by fatigue test, the correlation of X-ray parameter and fracture mechanics parameter was determined and then the stress intensity factor to actual broken turbine blade was predicted.

A Study on the X-Ray Fractography of Turbine Blade under Fatigue Load (피로하중을 받는 터빈 블레이드의 X선의 프랙토그래피에 관한 연구)

  • 김성웅;이동우;홍순혁;조석수;주원식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.778-783
    • /
    • 2001
  • Turbine blade is subject to cyclic bending force by steam pressure. Stress analysis by fractography is already established technology as means for seeking cause of fracture and has been widely employed. In the X-ray fractography, plastic deformation and residual stress near the fracture surface can by determined and information of internal structure of material can be obtained. Therefore, to find a fracture mechanism of torsion-mounted blade in nuclear power plant, based on the information from the fracture surface obtained by fatigue test, the correlation of X-ray parameter and fracture mechanics parameter was determined and then the load applied to actual broken turbine blade was predicted.

  • PDF