• 제목/요약/키워드: Fatigue Fracture Behavior

검색결과 342건 처리시간 0.035초

Relationship between Pattern of Fatigue Crack Surface and Fatigue Crack Growth Behavior under $K_{III}$ Mode-Four Point Shear in Al 5083-O

  • Kim Gun-Ho;Won Young-Jun;Sakakur Keigo;Fujimot Takehiro;Nishioka Toshihisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.474-482
    • /
    • 2006
  • Generally almost all fatigue crack growth is affected by mode I. For this reason a study on mode I has concentrated in the field of fracture mechanics. However the fatigue crack initiation and growth in machines and structures usually occur in mixed mode loading. If there is any relationship between the cause of fracture in mixed mode loading and fracture surface, fracture surface pattern will be the main mean explaining reasons of fatigue fracture and obtaining further information about fracture process. In this paper low point shear-fatigue test with Aluminum alloy hi 5083-O is carried out from this prospect and then the mixed mode distribution of fracture surface is examined from the result after identifying the generation of fatigue crack surface pattern. It was found from the experimental results that the fatigue crack surface pattern and the fatigue crack shear direction are remarkably consistent. Furthermore It is possible that the analysis of distribution of mixed mode through the fatigue crack surface pattern.

Al 5083-O재에 있어서 $K_{III}$ 모드 4점 전단 하에서의 피로파단면 무늬와 피로균열진전거동의 관계 (Relationship between Pattern of Fatigue Crack Surface and Fatigue Crack Growth Behavior under $K_{III}$ Mode-Four Point Shear in Al 5083-O)

  • 김건호;원영준;케이코 사카쿠라;타케히로 후지모토;토시히사 니시오카
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.43-44
    • /
    • 2006
  • Generally almost all fatigue crack growth is affected by model. For this reason a study on model has concentrated in the field of fracture mechanics. However the fatigue crack initiation and growth in machines and structures usually occur in mixed mode loading. If there is any relationship between the cause of fracture in mixed mode loading and fracture surface, fracture surface pattern will be the main mean explaining reasons of fatigue fracture and obtaining further information about fracture process. In this paper four point shear-fatigue test with Aluminum alloy Al 5083-O is carried out from this prospect and then the mixed mode distribution of fracture surface is examined from the result after identifying the generation of fatigue crack surface pattern. It was found from the experimental results that the fatigue crack surface pattern and the fatigue crack shear direction are remarkably consistent. Furthermore It is possible that the analysis of distribution of mixed mode through the fatigue crack surface pattern.

  • PDF

저방사화 페라이트강(RAFs)의 파괴인성 및 피로균열진전 특성 (Characterization of the fracture toughness and fatigue crack propagation of reduced activation ferritic steel(RAFs))

  • 김동현;윤한기;김사웅
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.13-18
    • /
    • 2004
  • The objective of this study is to investigate fracture toughness and fatigue crack propagation behavior in the Reduced Activation Ferritic Steel (RAFs) JLF-I. The fracture toughness tests were performed with various size(plane size and thickness) and various side groove of specimens. The fatigue crack propagation behavior of the JLF-I steel was investigated by the constant-amplitude loading test for the stress ratios R=O.I, 0.3 and 0.5 respectively. The effects of stress ratios and specimen size on the fatigue crack growth behaviors for JLF-I steel were discussed within the Paris law. The test results showed the standard CT specimen with the side groove of 40 % represented a valid fracture toughness. The fracture resistance curve increased with increasing plane size and decreased with increasing thickness. However, the fracture resistance curve of half size specimen was similar to that of the standard specimen. The fatigue crack propagation rate of a half size specimen was similar to that of a full size specimen at the stress ratios of 0.1, 0.3 and 0.5 respectively. The fatigue crack propagation behavior of this material were evaluated by using a half size specimen.

  • PDF

SiC 입자 보강 Al 복합재료의 피로균열 진전거동 (The Fatigue Crack Growth Behavior of Silicon Carbide Particles Reinforced Aluminun Metal Matrix Composites)

  • 권재도;문윤배;김상태
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.122-131
    • /
    • 1995
  • The research trends for metal matrix composites have been on basic mechanical properties, fatigue behavior after aging and fractographic observations. In this study, the fatigue crack initiation as well as the fatigue crack growth behavior and the fracture mechanism were investigated through observations of the fracture surface on silicon carbide particles reinforced aluminum metal matrix composites(SiCp/Al). Based on the fractographic study done by scanning electron microscope and replica, crack growth path model and fracture mechanism are presented. The mechanical properties, such as the tensile strength, yield strength and elongation of SiCp/Al composites are improved in a longitudinal direction, however, the fatigue life is shorter than the basic Al6061 alloys. From fractographic observations, it is found that the failure mode is ductile in basic Ai6061 alloys. And because some SiC particles were pulled out from the matrix and a few SiC particles could be seen on the fracture surface of SiCp/Al, crack growth paths are believed to follow the interface of the matrix and its particles.

알루미나 세라믹스의 동적피로거동 (Dynamic Fatigue Behavior of Alumina Ceramics)

  • 이홍림;이규형;박성은
    • 한국세라믹학회지
    • /
    • 제34권10호
    • /
    • pp.1053-1059
    • /
    • 1997
  • The dynamic fatigue behavior of alumina ceramics was observed at room temperature using four point bending system. The dynamic fatigue fracture strength and the dynamic fatigue lifetime were observed as a function of crosshead speed and the notch length. The notched specimen showed the smaller deviation in dynamic fatigue fracture strength than the unnotched specimen. The crack growth exponent n and the material constant A of the notched specimen could be represented as functions of the notch length. Fracture strength of the specimen calculated from the notch length, when the notch length was regarded as the crack size, was in good agreement with the measured 4 point bending strength. Fracture surface of the specimen showed the different fracture modes according to the crosshead speed. The four point flexural strength, fracture toughness, Young's modulus and Weibull modulus of the alumina were measured as 360 MPa, 3.91 MPa.m1/2, 159GPa, 17.64, respectively.

  • PDF

고주파표면경화한 SM45C 강에서 유교경화층깊이가 피로거동에 미치는 영향 (A Study on Fatigue Behavior according to Effective Case Depth in Induction Case Hardened SM45C Steel)

  • 오세욱;호정원;박원조
    • 한국해양공학회지
    • /
    • 제5권1호
    • /
    • pp.71-80
    • /
    • 1991
  • This paper reveals the effect of the effective case depth(ECD) on the fatigue behavior of a high-frequency induction hardened SM45C in rotated bending fatigue test. In addition, the effects of fracture modes(surface origin type, inner origin type) on it are discussed. The fatigue limit of the induction hardened steel is remarkably increased compared with that of base metal. In addition, the fatigue limit is linearly increased as the effective casedepth grows deep in the region of this experiment (ECD/R;0.23-0.49). The S-N curve and fracture mode in the induction case hardened steel are classified into two kinds, as a result : N$_{f}$<10$^{5}$ ;surface origin type fracture(at high stress), N$_{f}$>10$^{5}$ ; in ner origin type fracture(at low stress). In case of inner origin type fracture; as the effective case depth(ECD) gets deep, the fatigue limit is increased by the reason that the fracture origin moves toward center; in reverse, is decreased by reason that the compressive residual stress gets low. As a result, the increasing effect of the former is much bigger than the decreasing effect of the latter, and the fatigue limit is increased as the ECD gets deep.eep.

  • PDF

반복 동적하중에 의한 알루미나 세라믹스의 피로거동 (Fatigue Behavior of Alumina Ceramics under the Repeated Dynamic Loading)

  • 이규형;박성은;이홍림
    • 한국세라믹학회지
    • /
    • 제35권8호
    • /
    • pp.850-856
    • /
    • 1998
  • The dynaamic fatigue behavior of alumina ceramics was observed at room temperature using four-point bending method. Dynamic fatigue fracture strength was observed as function of down speed and notch length. The crack growth exponent of the specimens was calculated from the fracture strength and lifetime in dynamic fatigue test. After loading the stresses in the range of 0% to 105% compared with the average in-ert strength the value of residual fracture strength was measured for unnotched and 0.5mm notched speci-mens at the 0.001 and 0.0005 mm/min down speed respectively. After the 95% stress of the average inert strength was applied repeatedly the value of rsidual fracture strength was measured for 0.5mm notched specimens at the 0.001 and 0.0005 mm/min down speed respectively. The material constant A was found to be almost the same and not to depend on the loading mode or the down speed for unnotched and notched specimen. The value of fracture strength with time calculated from the constants n and A was in good agreement with the measured value.

  • PDF

레일강의 샬피거동 및 피로균열 성장거동에 관한 파괴역학적 고찰 (Fracture Mechanical Study on the Charpy V-notch and Fatigue Crack Propagation 8ehavior of Rail Steels)

  • 김성훈
    • 대한토목학회논문집
    • /
    • 제14권6호
    • /
    • pp.1319-1327
    • /
    • 1994
  • 레일강에 있어서 피로균열은 레일의 파괴와 그에 따른 열차탈선의 근본적인 요인으로서 실험실시험의 분석 결과에 의한 피로거동 및 파괴특성의 정량적 평가는 피로수명 추정 및 안전조사 주기설정의 기본이 된다. 따라서 본 연구에서는 살피충격시험의 결과로부터 레일강의 샬피거동 및 파괴인성거동을 평가하고 일정진폭하중하에서 피로시험의 분석 결과로부터 피로균열성장거동에 미치는 균열의 방향성, 온도, 그리고 응력비 R의 효과를 파괴역학적 수법을 도입하여 평가하였다.

  • PDF

$Al_2O_3$-33Vol.% $SiC_w$의 고온피로에 미치는 피로하중주파수의 영향 (Fatigue Frequency Effect of High Temperature Fatigue Fracture Behavior of $Al_2O_3$-33Vol.% $SiC_w$)

  • 김송희
    • 한국세라믹학회지
    • /
    • 제28권10호
    • /
    • pp.785-792
    • /
    • 1991
  • An investigation of the crack propagation behavior of Al2O3-33Vol.% SiCw at 140$0^{\circ}C$ was conducted with various loading frequencies. Higher crack propagation was observed in lower frequency and higher load ratios. Interface sliding fracture due to glassy phase from the oxidation of SiCw and cavitation along grain boundary of diffusional creep appeared to be the main mechanism of fatigue fracture in slower crack propagation while interface sliding and whisker pull out aided by glassy phase formation played main role of fatigue fracture for higher crack growth condition. The frequency effect on deformation behavior was discussed with a Maxwell model.

  • PDF

콘크리트의 피로균열 성장거동에 관한 연구 (A Study for the Fatigue Crack Growth Behavior of Concrete)

  • 김진근;김윤용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.101-107
    • /
    • 1996
  • In this study, the wedge splitting test (WST) specimens with various strength levels were tested to investigate the fatigue crack growth behavior of concrete. Selected test variables were concrete compressive strength with 2 levels (28 MPa, 60 MPa, 100 MPa) and maximum fatigue loading with 2 levels (75%, 85%). Fatigue testing was preceded by fracture energy test and the crack growth was measured by means of the compliance calibration method, 60 WST specimens were cast for the fatigue test, and 6 companion cylinders ($\phi$100${\times}$ 200 mm) for each batch. In fatigue test, the frequency of loading cycle was 1 Hz, and the minimum fatigue loading level was 5~10 % of ultimate monotonic loading. On the basis of the experimental results, a fracture mechanics-based empirical relationships for fatigue crack growth rate (da/dN-$\Delta$KI relationships) were presented. In addition, the effect of initial notch depth on the fracture energy and the validity of compliance calibration technique for the WST were shown.

  • PDF