• Title/Summary/Keyword: Fatigue Crack Propagation Behavior

Search Result 354, Processing Time 0.033 seconds

Characterization of the fracture toughness and fatigue crack propagation of reduced activation ferritic steel(RAFs) (저방사화 페라이트강(RAFs)의 파괴인성 및 피로균열진전 특성)

  • Kim, Dong-Hyun;Yoon, Han-Ki;Kim, Sa-Wong;Kohyama, A.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.13-18
    • /
    • 2004
  • The objective of this study is to investigate fracture toughness and fatigue crack propagation behavior in the Reduced Activation Ferritic Steel (RAFs) JLF-I. The fracture toughness tests were performed with various size(plane size and thickness) and various side groove of specimens. The fatigue crack propagation behavior of the JLF-I steel was investigated by the constant-amplitude loading test for the stress ratios R=O.I, 0.3 and 0.5 respectively. The effects of stress ratios and specimen size on the fatigue crack growth behaviors for JLF-I steel were discussed within the Paris law. The test results showed the standard CT specimen with the side groove of 40 % represented a valid fracture toughness. The fracture resistance curve increased with increasing plane size and decreased with increasing thickness. However, the fracture resistance curve of half size specimen was similar to that of the standard specimen. The fatigue crack propagation rate of a half size specimen was similar to that of a full size specimen at the stress ratios of 0.1, 0.3 and 0.5 respectively. The fatigue crack propagation behavior of this material were evaluated by using a half size specimen.

  • PDF

Effects of Strain Hardening Exponents on the Retardation of Fatigue Crack Propagation (가공경화지수가 피로균열 지연거동에 끼치는 영향)

  • 김상철;강동명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1193-1199
    • /
    • 1990
  • Effects of strain hardening exponents on the behavior of fatigue crack propagation are experimentally investigated. The retardation effect of fatigue crack propagation after single overloading is investigated in relation to strain hardening exponent and crack closure. A relationship between crack opening ratio and strain hardening exponents is inspected through an examination of the crack closure behavior. An empirical equation relating retardation effect of fatigue crack propagation after single overloading, percent peak load and strain hardening exponent of materials is proposed.

Effect of Specimen Thickness on Probability Distribution of Fatigue Crack Propagation Behavior in Magnesium Alloy AZ31 (AZ31 마그네슘합금 시편의 두께가 피로균열진전거동의 확률분포에 미치는 영향)

  • Choi, Seon-Soon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.395-400
    • /
    • 2009
  • As the variables affecting the fatigue behavior have uncertainty, the fatigue crack propagation is stochastic in nature. Therefore, the fatigue life prediction is critical for the design and the maintenance of many structural components. In this study, fatigue experiments are conducted on the specimens of magnesium alloy under the different thicknesses of specimen. The effects of specimen thickness on the probability distribution of the fatigue crack propagation life and the crack size are estimated experimentally. The probability distribution of the crack size and the fatigue life for different specimen thicknesses are investigated by Anderson-Darling test and the best fit for those probability distributions are also presented.

  • PDF

Fatigue Crack Initiation and Propagation From Two Micro Hole Defects (두개의 미소원공결함에서의 피로크랙발생과 전파에 관한 연구)

  • Song, Sam-Hong;Bae, Joon-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.842-849
    • /
    • 1997
  • The aim of this study is an investigation of the interaction of two micro hole defects affecting fatigue crack initation life and propagation behavior. The locatio of two micro hole defects was considered as an angle of alignment and the distance between the centers of two micro hole defects. The fatigue cracking behavior is experimented under bending. When micro defects are located close to each other, the fatigue crack initiation lives are varied with their relative locations. In the experiments, the area of local plastic strain strongly played a role in the fatigue crack initiation lives. Therefore we introduce a parameter which contains the plastic deformation area at stress concentrations and propose a fatigue crack initiation life prediction curve. In addition, the directions and propagation rates of fatigue cracks initiated at two micro hole defects are studied experimentally.

Effect of Stringers in Stiffened Panel under Varying Fatigue Load (일정진폭 및 변동하중을 받는 보강판에서 보강재가 피로균열전파에 미치는 영향)

  • 이억섭;이윤표
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.136-145
    • /
    • 2003
  • The integrity of stiffened panels with stringers in airplane structure is generally enhanced by investigating the fatigue crack propagation behavior in detail and providing the technical methodology to deal with the propagating crack. This paper attempts to clarify the effect of load-ratio on the fatigue crack propagation rate and the fatigue life for the thin aluminum 2024-T3. Both the variable and the constant fatigue loading conditions are considered for the fatigue crack propagation behavior in stiffened panels with stringers.

A Study on Corrosion Fatigue Crack Propagation Behaviors due to a Single Overload in 6063-T5 Aluminum Alloy (6063-T5 알미늄 합금의 단일과대하중에 의한 부식피로균열진전거동에 관한 연구)

  • 강동명;우창기;이하성
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.38-44
    • /
    • 1997
  • 6063-T5 alloys are tested in laboratory air, water and 3% NaCl solution to investigate the effects of corrosive environment on the retardation behavior through single overload fatigue test. Also, the fatigue crack propagation and the crack closure behavior are studied. The results obtained in this experimental study are summarized as follows. 1) Behaviors of fatigue crack growth retardation are observed in water and 3% NaCl solution as they do in air. The number of delay cycles and the size of affected region by single overload decrease greatly in water and 3% NaCl compared with those in air. 2) In fractographic results, the overload marking by single overload appear remarkably in air, but indistinctly in water and 3% NaCl solution. 3) The effect of crack closure on crack propagation is most remarkable in the beginning of crack propagation. With crack propagation, the crack closure level and its effect decrease greatly.

  • PDF

A Study on the Fatigue Crack Propagation Behavior of Cr-Mo-V Alloy with Micro Defects at High Temperature. (미소 원공결함을 갖는 Cr-Mo-V강의 고온피로 크랙전파거동)

  • Song, Samhong;Kang, Myungsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.70-77
    • /
    • 1996
  • Fatigue tests were carried out at high temperature on a Cr-Mo-V steel in order to assess the fatigue life of components used in power plants. The characteristics of high temperature fatigue were divided in terms of cycle-dependent fatigue and time-dependent fatigue, each crack propagation rate was examined with respect to fatigue J-integral range, .DELTA. J$_{f}$and creep J-integral range, .DELTA. J$_{c}$. The fatigue life was evaluated by analysis of J-integral value at the crack tip with a dimensional finite element method. The results obtained from the present study are summarized as follows : The propagation characteristics of high temperature fatigue cracks are determined by .DELTA. J$_{f}$for the PP(tensile plasticity-compressive plasticity deformation) and PC(tensile plasticity - compressive creep deformation) stress waveform types, and by .DELTA. J$_{c}$for the CP(tensile creep- compressive plasticity deformation) stress waveform type. The crack propagation law of high temperature fatigue is obtained by analysis of J-integral value at the crack tip using the finite element method and applied to examine crack propagation behavior. The fatigue life is evaluated using the results of analysis by the finite element method. The predicted life and the actual life are close, within a factor of 2.f 2.f 2.

  • PDF

용접부 쉐브론노치 형상에 대한 균열전파 특성

  • 김엽래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.194-197
    • /
    • 1996
  • The high-strength aluminum alloy 7075-T651 was used to observe the fatigue-crack-propagation behavior for the various stress ratios with constant amplitude loading and thus to predict the fatigue life. With a chevron notch in the specimen the fatigue-crack-propagation behavior of through crack was investigated. Crack propagation behavior of through crack in the depth direction and crack growth of weldments were experimentally studied. Base material heat affected zone and weld material were considered in the fracture of weldments. The change of crack-propagation length with respect to several parameters such as stress intensity factor range(ΔK) effective stress intensity factor range(ΔKeff)ration of effective stress intensity factor range(U) stress intensity factor of crack opening point(K op) maximum stress intensity factor(K max) and number of cycles(Nf)was determined. The crack length of through crack of weldments was 2.4mm and the remaining part was a base material. The experiment was accomplished by making the crack propagate near the base material.

  • PDF

Effects by the Magnitude of Shear Load on the Formation and Propagation of Mode II Branch Cracks (전단하중의 크기가 모드 II 분기균열의 형성과 전파에 미치는 영향)

  • 이정무;송삼홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.487-490
    • /
    • 2004
  • In this paper, we investigated the characteristics of initiation and propagation behavior for fatigue crack observed by changing various shapes of initial crack and magnitudes of loading in modified compact tension shear(CTS) specimen subjected to shear loading. In the low-loading condition, the secondary fatigue crack was created in the notch root due to friction on the pre-crack face grew to a main crack. In the high-loading condition, fatigue crack under shear loading propagated branching from the pre-crack tip. Influenced by the shear loading condition, fatigue crack propagation retardation appeared in the initial propagation region due to the reduction of crack driving force and friction on crack face. In both cases, however, fatigue cracks grew in tensile mode type. The propagation path of fatigue crack under the Mode II loading was 70 degree angle from the initial crack regardless of its shape and load magnitude.

  • PDF

Effect of Peening on Low Temperature Fatigue Strength Behavior of STABILIZER BAR in Suspension Material (현가장치 STABILIZER BAR의 저온피로강도에 미치는 쇼트피닝의 영향)

  • 박경동;정재욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.58-64
    • /
    • 2004
  • The purpose of this study is to predict the behavior of fatigue crack propagation as one of fracture mechanics on the compressive residual stress. We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, and -10$0^{\circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. There is a difference between shot peened specimen and unpeened specimen. Fatigue crack growth rate of shot peened specimen was lower than that of unpeened specimen. Shot peening is improve the resistance of crack growth by fatigue that make a compressive residual stress on surface. That is the constrained force about plasticity deformation was strengthened by resultant stress, which resulted from plasticity deformation and compressive residual stress in the process of fatigue crack propagation. Temperature goes down, fatigue crack growth rate decreased.