• Title/Summary/Keyword: Fatigue Crack Initiation Life

Search Result 170, Processing Time 0.03 seconds

Study on the Fatigue Crack Initiation Life uncle]r 3-Dimensional Rough Contact (3차원 거친 접촉하에서의 피로균열 시작수명에 관한 연구)

  • 김태완;구영필;조용주
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.160-166
    • /
    • 2002
  • In case of rough contact fatigue, the accurate calculation of surface tractions is essential to the prediction of crack initiation life. Accurate Surface tractions influencing shear stress amplitude can be obtained by contact analysis based on the morphology of contact surfaces. In this study, to simulate rough contact under sliding condition, gaussian rough surface generated numerically in the previous study was used and to calculate clack initiation life in the substrate, dislocation pileup theory was used.

Effect of Indentation Residual Stresses on the Fatigue Crack Initiation Life (피로균열 발생수명에 대한 압입 잔류응력의 영향)

  • 이환우;강태일
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.158-165
    • /
    • 2004
  • Up to now, many crack repair techniques have been developed for inhibiting crack growth in structural components. However, the simplest way for inhibiting crack growth is to apply a indentation at the crack tip or at some distance ahead of the expected crack growth path so as to produce residual compressive stresses that can reduce the effective stresses around the crack tip. In spite of its importance to the aerospace industry, little attention has been devoted to evaluation of the indentation residual stress effect on the fatigue crack initiation life quantitatively. Therefore, in the present work, the magnitude and distribution of the indentation residual stresses were investigated in order to estimate the beneficial effect on fatigue crack initiation by using finite element method. Furthermore, to examine the validity of finite element analysis results, residual stress distribution in the indented specimen was measured by using X-ray diffraction technique, and fatigue crack behavior at fastener hole in aluminum alloy 7075-T6 before and after indentation processes was investigated.

Fatigue Crack Initiation and Propagation From Two Micro Hole Defects (두개의 미소원공결함에서의 피로크랙발생과 전파에 관한 연구)

  • Song, Sam-Hong;Bae, Joon-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.842-849
    • /
    • 1997
  • The aim of this study is an investigation of the interaction of two micro hole defects affecting fatigue crack initation life and propagation behavior. The locatio of two micro hole defects was considered as an angle of alignment and the distance between the centers of two micro hole defects. The fatigue cracking behavior is experimented under bending. When micro defects are located close to each other, the fatigue crack initiation lives are varied with their relative locations. In the experiments, the area of local plastic strain strongly played a role in the fatigue crack initiation lives. Therefore we introduce a parameter which contains the plastic deformation area at stress concentrations and propose a fatigue crack initiation life prediction curve. In addition, the directions and propagation rates of fatigue cracks initiated at two micro hole defects are studied experimentally.

Prediction of fatigue crack initiation life in SA312 Type 304LN austenitic stainless steel straight pipes with notch

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Anjusha, K.V.;Gandhi, P.;Singh, P.K.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1588-1596
    • /
    • 2022
  • In the nuclear power plants, stainless steel is widely used for fabrication of various components such as piping and pipe fittings. These piping components are subjected to cyclic loading due to start up and shut down of the nuclear power plants. The application of cyclic loading may lead to initiation of crack at stress raiser locations such as nozzle to piping connection, crown of piping bends etc. of the piping system. Crack initiation can also take place from the flaws which have gone unnoticed during manufacturing. Therefore, prediction of crack initiation life would help in decision making with respect to plant operational life. The primary objective of the present study is to compile various analytical models to predict the crack initiation life of the pipes with notch. Here notch simulates the stress raisers in the piping system. As a part of the study, Coffin-Manson equations have been benchmarked to predict the crack initiation life of pipe with notch. Analytical models proposed by Zheng et al. [1], Singh et al. [2], Yang Dong et al. [25], Masayuki et al. [33] and Liu et al. [3] were compiled to predict the crack initiation life of SA312 Type 304LN stainless steel pipe with notch under fatigue loading. Tensile and low cycle fatigue properties were evaluated for the same lot of SA312 Type 304LN stainless steel as that of pipe test. The predicted crack initiation lives by different models were compared with the experimental results of three pipes under different frequencies and loading conditions. It was observed that the predicted crack initiation life is in very good agreement with experimental results with maximum difference of ±10.0%.

Low Cycle Fatigue Life Evaluation of External Grooved C-shaped Specimen (외경홈을 지닌 C형 시험편의 저주기 피로수명평가)

  • Lee, Song-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.199-208
    • /
    • 1997
  • A local strain approach was applied to an external single and double grooved C-shaped specimen in order to evaluate and predict the fatigue crack initiation life by using low cycle fatigue properties. The low cycle fatigue properties were determined from the strain-controlled fatigue tests using smooth cylindrical axial specimens. Fatigue crack initiation life was evaluated by a life prediction software, FALIPS, based on the local strain approach. The fatigue life was significantly influenced by the mean stress, and SWT parameter represented the fatigue life effectively. The predicted fatigue crack initiation life was then compared to the experimental fatigue life evaluated from the C-shaped fatigue test specimens. A good correlation was found between the experimental and predicted fatigue lives within factors of 2 and 4 for the single and double grooved C-shaped specimens respectively. Also, experimental fatigue life of the double grooved specimen was 10-12 times longer than that of the single grooved specimen.

Variability of Fatigue Crack Initiation Life in Flux Cored Arc Welded API 2W Gr.50 Steel Joints

  • Sohn, Hye-Jeong;Kim, Seon-Jin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.160-169
    • /
    • 2012
  • Flux Cored Arc Welding (FCAW) is a common practice to join thick plates such as the structural members of large scale offshore structures and very large container ships. The objective of this study was to investigate the mechanical properties and variability of the fatigue crack initiation life in the flux cored arc welded API 2W Gr.50 steel joints typically applied to offshore structures with a focus on the effect of the materials in fatigue crack growth life from the notch root of a compact tension specimen. Offshore structural steel (API 2W Gr.50) plates (60-mm thick) were used to fabricate multi-path flux core arc welded butt welded joints to clearly consider fatigue fractures at the weld zone from the notch. Fatigue tests were performed under a constant amplitude cyclic loading of R = 0.4. The mean fatigue crack initiation life of the HAZ specimen was the highest among the base metal (BM), weld metal (WM), and heat affected zone (HAZ). In addition, the coefficient of variation was the highest in the WMl specimen. The variability of the short fatigue crack growth rates from the notch tips in the WM and HAZ specimens was higher than in BM.

Characteristic of Corrosion Fatigue of High Strength Steel for Marine Structures (해양 구조물용 고장력강의 부식피로특성)

  • ;T. Kubo;H. Misawa
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.409-412
    • /
    • 2003
  • Fatigue strength. especially crack initiation behavior of high strength steel under marine water environment was investigated. Marine structures were usually constructed by lot of weld joints and were designed by basis of the fatigue strength of weld joints. This study was carried out to mini. The fatigue initiation behavior is more important rather than crack propagation behavior under the design of marine structures, because it is very difficult to find out the crack propagation phenomena and repair the damaged part of welded joints in sea water Then, the new configuration specimen for fatigue crack initiation tests was proposed. Using this new specimen, it is easy to carry out the crack initiation tests with relatively low cycling loading and clearly find out a crack initiation fatigue life.

  • PDF

A Study of Crack Propagation and Fatigue Life Prediction on Welded Joints of Ship Structure (II) (선체 용접부의 균열진전 및 피로수명예측에 관한 연구(II))

  • Kim, Kyung-Su;Shim, Chun-Sik;Kwon, Young-Bin;Ko, Hee-Seung;Ki, Hyeok-Geun;Viswanathan, K.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.679-687
    • /
    • 2008
  • The fatigue life of ship structure under cyclic loading condition is made up of crack initiation and propagation stages. For a welding member in ship structure, the fatigue crack propagation life is more important than the fatigue crack initiation life. To calculate precisely the fatigue crack propagation life at the critical welding location, the knowledge of the residual stress sensitivity on the fatigue strength is necessary. In this study, thermo elastic-plastic analysis was conducted in order to examine the effect of residual stress on the fatigue crack propagation life. Also the fatigue crack propagation lives considering residual stress were calculated using fatigue crack growth code, AFGROW, on the basis of fracture mechanics. AFGROW is widely used for fatigue crack growth predictions under constant and variable amplitude loading. The reliability of AFGROW on the fatigue of ship structure was confirmed by the comparison of the estimated results with the fatigue propagation test results.

Fatigue Life Evaluation of Spot Weldment Using DCPDM (직류전위차법을 이용한 점용접부의 피로수명 평가)

  • 유효선;이송인;권일현;안병국
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.58-64
    • /
    • 2001
  • The initiation and propagation lives of fatigue crack were studied for spot weldments composed of cold rolled steel plates(SPC$\times$SPC) and galvanized steel plates(GA$\times$GA) using DC potential drop method(DCPDM). Through the various test results, it was known that the fatigue crack initiation and propagation behaviors in all specimens could be definitely detected by DCPDM. The fatigue crack initiation life( $N_{i}$) detected by DCPDM in SPC$\times$SPC and GA$\times$GA spot weldments increased as the welding current and the nugget diameter( $N_{d}$) increased. The fatigue crack propagation life($\Delta$ $N_{f-i}$) declined as the difference of $N_{i}$ and the fatigue fracture life( $N_{f}$) also increased according to the decrease of fatigue load, $\Delta$P and the increase of nugget diameter. In the same spot weldments, the increase of nugget diameter came to increase fatigue crack propagation life owing to a decrease of stress concentration in front of nugget, especially the increasing extent for GA$\times$GA spot weldment was very high. In the welding current 6kA, $N_{f}$ for GA$\times$GA spot weldment decreased more than that of SPC$\times$SPC specimen due to zinc layer coated in steel plate and undersized nugget diameter. On the other hand, in 8kA and 10kA, the GA$\times$GA spot weldment showed higher $N_{f}$ in spite of lower $N_{i}$, than that of SPC$\times$SPC specimen except 3,000N fatigue load.ue load. load.d.

  • PDF

A Study of Crack Propagation and Fatigue Life Prediction on Welded Joints of Ship Structure(I) (선체 용접부의 균열진전 및 피로수명 예측에 관한 연구(I))

  • Kim, Kyung-Su;Ito, Hisashi;Seo, Yong-Seok;Jang, Beam-Sean;Kim, Beam-Il;Kwan, Young-Bin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.669-678
    • /
    • 2008
  • The fatigue life of ship structure under cyclic loading condition is made up of initiation and propagation stages. In this study, crack growth test is carried out on large scale structure test specimens and fracture mechanical analysis is performed. The fatigue lives measured from fatigue tests are compared with DNV, Matsuoka and BS 5400 S-N curve. And to predict the crack initiation life, S-N curve, corresponding to crack length 20mm at welded joint, is developed based on hot spot stress range. Also crack propagation life is calculated using crack growth equation. Consequently, computed crack propagation life is compared with experiment results.