• Title/Summary/Keyword: Fatigue Crack Growth Threshold

Search Result 70, Processing Time 0.022 seconds

Microstructual Change and Near-threshold Fatigue Crack Growth Behaviors of Ni-Cr-Mo-V Steel by Tempering Treatments (Ni-Cr-Mo-V강의 템퍼링에 의한 미세구조 변화와 하한계 피로균열진전 특성)

  • Shin, Hoon;Moon, Yun-Bae;Kim, Sang-Tae;Kwon, Jae-Do
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.4
    • /
    • pp.266-277
    • /
    • 1997
  • Near-threshold fatigue crack growth characteristics was investigated on the Ni-Cr-Mo-V low alloy steel, which has the different microstructure obtained by tempering at various temperature. The specimens were austenized at $950^{\circ}C$ and then followed by tempering at $200^{\circ}C$, $530^{\circ}C$ and $600^{\circ}C$. Strain rate was obtained from strain gauge attached on the crack tip and crack opening point was observed through load-strain curve. Threshold stress intensity range(${\Delta}K_{th}$) was increased with increasing tempering tempuerature, but the effective threshold stress intensity rage (${\Delta}K_{eff,\;th}$) was not affected with the increasing temperature. Grain size increased with increasing tempering temperature.

  • PDF

Crack Growth Analysis and Crack Arrest Design of Stiffened Panels(II) - Numerical Simulation of Crack Arrest Behavior (보강판의 균열거동해석과 Crack Arrest 설계(II) - Crack Arrest 거동의 시뮬레이션)

  • Rhee, Eui-Jong;Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.50-56
    • /
    • 2005
  • To demonstrate the feasibility of utilizing FCAD chart proposed in our previous work, series of crack growth/arrest behavior in the integrally stiffened panels were simulated by numerical method using upper mentioned FCAD charts and a new crack growth rate equation. It is concluded that proposed family of FCAD curves, in the form of non-dimensional arrest load ranges, are reliable indicators of fatigue crack growth/arrest behavior of integrally stiffened panels considered here.

  • PDF

Effect of Stress Ratio on Fatigue Fracture of a Shot Peening Marine Structural Steel (쇼트피닝 가공된 해양구조용강의 피로파괴에 미치는 응력비의 영향)

  • PARK KYOUNG-DONG;JIN YOUNG-BEOM;PARK HYOUNG-DONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.43-49
    • /
    • 2004
  • The lightness of components required in the automobile and machine industry necessitates the use of high strength components. In particular, the fatigue failure phenomena, which occurs when using metal, increases the danger to human life and property. Therefore, antifatigue failure technology is an integral part of current industries. Currently, the shot peening is used for removing the defect from the surface of steel, while improving the fatigue strength on surface. Therefore, in this paper, the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in a stress ratio(R=0.1, R=0.3, R=0.6) was investigated, giving consideration to fracture mechanics. By using the methods mentioned above, following conclusions are drawn: (1) The fatigue crack growth rate(da/dN) of the shot-peening material was lower than that of the un-peening material and in stage I, ΔKth, the threshold stress intensity factor of the shot-peen processed material is high in critical parts, unlike the un-peening material. Also m, fatigue crack growth exponent and number of cycle of the shot-peening material, was higher than that of the un-peening material, as concluded from effect of da/dN. (2) Fatigue life shows more improvement in the shot-peening material than in the un-peening material, and the compressive residual stress of surface on the shot-peen processed operate resistance of fatigue crack propagation.

A Model Estimating the Ratigue Crack Growth in Aluminum Alloy A5083-O Considering the Effect of Stress ratio (응력비의 영향을 고려한 알루미늄합금 A5083-O의 피로균열전파 특성 예측모델)

  • 조상명;김종호;김영식
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.82-89
    • /
    • 1994
  • In this paper the effect of stress ratio on the fatigue crack growth rate of aluminum alloy A5083-O was examined. The fatigue tests were carried out using CCT (center cracked tension) specimens and CT(compact tension) specimens which were subjected to 0.5 and -1.0 stress ratio respectively. The obtained results are as follows; 1) The $\DeltaK_{th}$ as the function of stress ratio R was introduced in evaluating the fatigue crack growth rate of A5083-O. 2) A new model evaluating the effect of stress ratio on the fatigue crack growth rate was developed over the region of low and high propagation rate.

  • PDF

A Study on the Effect of Shot Velocity by Shot Peening on fatigue Crack Growth Property for Marine Structural Steel (해양구조용강의 피로크랙진전특성에 미치는 쇼트피닝 투사속도의 영향)

  • 박경동;노영석
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.47-53
    • /
    • 2003
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require such expensive tools, as well as a great deal of time and effort. Therefore, the improvement of fatigue life through, the adoption of residual stress, is the main focus. The compressive residual stress was imposed on the surface according to each shot velocity(1800, 2200, 2600, 3000rpm) based on Shot-peening, which is the method of improving fatigue life and strength. By using the methose mentioned above, we arrived at the following conclusions; 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. In stage I, $\Delta$K$_{th}$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts, unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. Compressive residual stress of the surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

A study on near threshold and stable crack growth behaviors in high strength aluminum alloys (고강도 알루미늄합금의 피로균열의 하한계 및 안정 전파거동)

  • 옹장우;진근찬;김종배;김재훈;하태수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.271-277
    • /
    • 1988
  • The threshold fatigue crack growth and the stable crack propagation behaviors were studied in 7017 T 651, 7020 T 651 and 5083 H 115 aluminum alloys. The threshold (.DELTA. K $_{th}$) fatigue crack growth can be expressed by the equation .DELTA. $K_{th}$) = .DELTA. $K_{tho}$(1-R)$^{r}$ , where R is stress ratio, .DELTA. $K_{tho}$ is .DELTA. K at R = 0 and r is material constant. The stable crack growth rate against stress intensity factor range .DELTA. K exhibits the trilinear form with two transitions and results of investigation on crack closure phenomena showed that the crack opening stress intensity factor $K_{op}$ is approximately equal to R $K_{max}$. + .DELTA. K $_{th}$.th/.

A Effect of Shot Peening for Fatigue Life of Spring Steel for Vessel Application (선박용 스프링강의 피로수명에 미치는 쇼트피닝의 영향)

  • Ryu Hyung-Ju;Park Keyung-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.426-435
    • /
    • 2005
  • The lightness of components required in automobile and machinery industries is requiring high strength of components. Therefore this requirement is accomplished as the process of shot-peening method that the compressive residual stress is made on the metal surface as one of various improvement methods. Special research is, therefore, needed about compressive residual stress on the metal surface in the process of shot-peening method. Therefore, in this paper the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in environmental condition(temperature) and mechanical condition(shot velocity, stress ratio) was investigated with considering fracture mechanics. By using the methods mentioned above, the following conclusions have been drawn. (1) The fatigue crack growth rate(da/dN) of the shot-peened material was lower than that of the un-peened one. In high temperature range. fatigue crack growth rate decreased with increasing temperature range, while fatigue crack growth rate increased by decreasing temperature in low temperature. (2) Fatigue life shows more improvement in the shot-peened material than in the un-peened material. And compressive residual stress of surface on the shot-peen processed operate resistance force of fatigue crack propagation.

The Effect of Temperature on Fatigue Fracture of Pressure Vessel Steel for Vehicle (차량용 압력용기용 강의 피로파괴에 미치는 온도의 영향)

  • 박경동;김영대;김형자
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.219-226
    • /
    • 2003
  • The fatigue crack growth behavior of the SA516/60 steel used for pressure vessels was examined experimentally at room temperatures $25^{\circ}C$,$-30^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$, $-100^{\circ}C$ and $-120^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. fatigue crack propagation rate da/dN related with stress intensity factor range $\Delta$K was influenced by stress ratio in stable than fatigue crack growth (Region II) with an increase in $\Delta$K. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are explained mainly by the crack closure and the strengthening due to the plasticity near the crack tip and roughness of the crack faces induced.

Stable and Unstable Crack Growth in Chromium Pre-alloyed Steel

  • Gerosa, Riccardo;Rivolta, Barbara;Tavasci, Adriano;Silva, Giuseppe;Bergmark, Anders
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.138-139
    • /
    • 2006
  • Sintered steels are materials characterized by residual porosity, whose dimension and morphology strongly affect the fatigue crack growth behaviour of the material. Prismatic specimens were pressed at $7.0\;g/cm^3$ from Astaloy CrM powder and sintered varying the sintering temperature and the cooling rate. Optical observations allowed to evaluate the dimensions and the morphology of the porosity and the microstructural characteristics. Fatigue tests were performed to investigate the threshold zone and to calculate the Paris law. Moreover $K_{Ic}$ tests were performed to complete the investigation. Both on fatigue and $K_{Ic}$ samples a fractographic analysis was carried out to investigate the crack path and the fracture surface features. The results show that the Paris law crack growth exponent is around 6.0 for $1120^{\circ}C$ sintered and around 4.7 for $1250^{\circ}C$ sintered materials. The same dependence to process parameters is not found for $K_{Ith}$.

  • PDF

The Effect of Stress Ratio on Fatigue Crack Propagation Rate in SA516/70 Pressure Vessel Steel at Low Temperature (SA516/70 압력용기 강의 저온 피로균열 진전 속도에 미치는 응력비의 영향)

  • 박경동;김정호;최병국;임만배
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • The fatigue crack growth behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, $-60^{\circ}C$,$-80^{\circ}C$ and $-100^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ${\Delta}K$ was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF