• Title/Summary/Keyword: Fatigue Characteristic

Search Result 293, Processing Time 0.094 seconds

AN EXPERIMENTAL STUDY ON THE FATIGUE FRACTURE OF LAMINATE PORCELAIN (치과용 라미네이트 도재의 피로파괴에 관한 실험적 연구)

  • Park Charn-Woon;Bae Tae-Sung;Lee Sang-Don
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.482-505
    • /
    • 1993
  • The purpose of this study was to evaluate the fracture characteristics and the effect of resin bonding of laminate porcelain. In order to characterize the indentation-induced crack, Young's moduli and characteristic indentation dimensions were measured. The fatigue life under three point flexure test was measured using the electro-dynamic type fatigue machine, and the crack propagation with thermocycling was investigated on the condition of 15 second dwell time each in $5^{\circ}C\;and\;55^{\circ}C$ bath. The Vickers indentation pattern and the fracture surface were examined by an optical microscope and a scanning electron microscope (SEM). The results obtained were summarized as follows ; 1. Young's moduli(E) of the laminate porcelain and the resin cement used in this experiment were $62.56{\pm}3.79GPa$ and $15.01{\pm}0.12GPa$, respectively. 2. The initial crack size of the laminate porcelain was $69.19{\pm}5.94{\mu}m$ when an indentation load of 9.8N was applied, and the fracture toughness was $1.065{\pm}0.156MPa\;m^{1/2}$. 3. The fatigue life of laminate porcelain showed the constant fracture range at the stress level 27.46-35.30MPa. 4. When a cyclic flexure load was applied, the fatigue life of resin-bonded laminate porcelain was more decreased than that of laminate porcelain. 5. When a thermocycling was conducted, the crack growth rate of resin-bonded laminate porcelain was more increased than that of laminate porcelain. 6. Fracture surface showed the radial crack, the lateral crack, and the macroscopic crack branching region beneath the plastic deformation region when an indentation load of 9.8N was applied.

  • PDF

Fatigue Behavior of STS316L Weldments and Degradation Characteristic Evaluation by Ultrasonic Test (STS316L 용접부의 피로거동 및 초음파시험에 의한 열화특성 평가)

  • Nam, Ki-Woo;Park, So-Soon;Ahn, Seok-Hwan;Do, Jae-Yoon;Park, In-Duck
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.156-164
    • /
    • 2003
  • STS316L had been used as the structural material for energy environmental facilities, because austenite stainless steels like 316L have superior mechanical properties of which toughness, ductility, corrosion resistant and etc. However, those welded structures are receiving severe damage due to increasing of the aged degradation. Most studies until now have been carried out against fatigue behaviors of weldments, and were not well studied on nondestructive evaluation methods. In this study, the fatigue crack propagation behavior of STS316L weldment usually used for vessels of the nuclear power plant was investigated. Also, the degradation characteristics of 316L stainless steel weldments were evaluated by the ultrasonic parameter such as ultrasonic velocity, attenuation factor and time-frequency analysis. The results of this study can be used as a basic data for the prediction of the fatigue crack life of weldments structures without disjointing or stopping service of structures in service.

Effects of Fillers on Fatigue Crack Growth Rate of Ethylene Propylene Diene Monomer (충전제가 EPDM의 피로균열 성장속도에 미치는 영향)

  • Hong, Chang-Kook;Jung, Jae-Yeon;Cho, Dong-Lyun;Kaang, Shin-Young
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.270-275
    • /
    • 2008
  • Crack growth characteristics of elastomeric materials are an important factor determining the strength and durability. In this study, the fatigue crack growth characteristic of filled EPDM compounds with different reinforcing fillers, such as silica and carbon black, was investigated using a newly designed tester. Frequency and test temperature had significant effects on the fatigue crack growth. The crack growth rate decreased with increasing frequency and the rate increased with increasing temperature. A power law relationship between the tearing energy and crack growth was observed for filled EPDM compounds. The crack growth rate reduced with increasing filler contents. Silica filled EPDM showed a better fatigue resistance than carbon black filled EPDM. The crack growth rate of silica filled EPDM decreased up to 30 phr and increased again at 50 phr. The formation of microductile type pits was observed on the fatigue-failure surface of unfilled EPDM, and relatively coarse surface with randomly distributed tear lines was observed on the failure surface of silica filled EPDM.

Effect of Annealing Temperature on the Properties of Sputtered Bi3.25La0.75Ti3O12 Thin Films

  • Kang, Hyunil;Song, Joontae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.130-132
    • /
    • 2013
  • $Bi_{3.25}La_{0.75}Ti_3O_{12}$(BLT) thin films were prepared on the Pt(150 nm)/Ti(50 nm)/$SiO_2$/Si substrate using the rf magnetron sputtering method. The BLT thin films were annealed at temperatures ranging from $600^{\circ}C$ to $750^{\circ}C$ using the rapid thermal annealing. The structure and surface morphology of the thin films were characterized by x-ray diffraction and field emission scanning electron microscopy. The hysteresis loop of the BLT thin films showed that the remanent polarization (2Pr) of the film annealed at $700^{\circ}C$ was 10.92 ${\mu}C/cm^2$. The fatigue characteristic of the BLT thin film annealed at $700^{\circ}C$ was shown change polarization up to $1.2{\times}10^9$ switching cycles. We confirmed the excellent remnant polarization (Pr) and fatigue properties compared with other fabrication methods and suggested a good method for BLT thin films fabrications.

Properties of PZI Thin film on the Ru/RuO2 Electrode (Ru/RuO2전극에 성장한 PZT 박막의 특성에 관한 연구)

  • Kang, Hyun-Il;Choi, Jang-Hyun;Park, Young;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.865-869
    • /
    • 2002
  • The structural and electrical properties of PZT (lead zirconate titante) thin films grown on Pt (platinum) and Ru/Ru $O_2$(ruthenium/ruthenium oxide) electrodes were investigated. Thin films of PZT were deposited on a variety of electrodes using the rf-magnetron sputtering process. PZT films exhibited polycrystalline structure with strong PZT (100) plane and weak (211) plane for an optimizied Pt electrode and (100), (101), (111), (200), (210), (211) planes for Ru/Ru $O_2$. Switching polarization versus fatigue characteristic of Pt/Ti electrodes showed 20% degradation up to 1 $\times$ 10$_{9}$ cycles. No significant fatigue was observed in the films on Ru/Ru $O_2$ electrodes up to Ix109 test cycles. The results show that the new Ru/Ru $O_2$ bottom electrodes are expected to reduce the degradation of ferroelectric fatigue.

A Study on Fatigue strength by hardenability of Boron Addition Steel (보론 첨가강의 경화기구에 따른 기계적 성질에 관한 연구)

  • Lee, Jong-Hyung;Yoo, Duck-Sang;Park, Shin-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.299-305
    • /
    • 2003
  • This research is for the relationship with heat treatment cooling temprature and the characteristic of Mechanical properties of Boron-Addition-Steel, the main material and SM25C steel, the sub material, structure viewing fractography, hardness test, tensite test and are carried out after the manufacturing small-specimen treated with heat of $750^{\circ}C$, $850^{\circ}C$, $1050^{\circ}C$. The influence to the Mechanical properties accompanied by AISI51B20, Boron-Addition-steel shows the following result. 1. The influenc of heat treatment by the content of cabon-steel is dominant. Addition of boron result is Strengthening structure effectively by segregation and improving over all mechanical characters such as good. it results from the increase of temacity by the stability of inter granular with improvement of harden-ability. 2. Boron-Addition-Steel exist in the from of martensite structure accompanied by the ferrite precipitition centering around grain boundary, and is improved to Hv 200. 3. The height of harden-ability and fatigue stress the influence of heat results from crystal structure of martensite by difference of strength level in the structure of ferrite and doesn't have am effect on sensibility of temperature, and turns out to defend on production and growth of Matrix-structure-factor.

  • PDF

Evaluation of Characteristic Improvement of Waste-Polyethylene Asphalt Concrete (폐폴리에틸렌 필름 재활용 아스팔트 콘크리트의 특성 분석)

  • Kim, Kwang-Woo;Li, Xing-Fan;Jeong, Seung-Ho;Lee, Soon-Jae;Lee, Gi-Ho
    • International Journal of Highway Engineering
    • /
    • v.4 no.1 s.11
    • /
    • pp.161-170
    • /
    • 2002
  • This study is a fundamental research for recycling waste polyethylene film(WPF) in asphalt concrete for roadway pavement. The objective of this study is to develop technology of making waste polyethylene asphalt mixture and evaluate properties of the asphalt concrete containing WPF. Asphalt concrete for surface course of pavement was produced through an appropriate mix-design using dense-graded and gap-graded aggregates. Marshall mix design, indirect tensile strength test, wheel tracking test and tensile fatigue test were performed. Test result showed that some WPF asphalt mixtures had a high tensile property and good resistances against rutting and fatigue cracking, compared with normal asphalt mixture.

  • PDF

Low Cycle Fatigue Model for Longitudinal Reinforcement (축방향철근의 저주파 피로 모델)

  • Ko, Seong-Hyun;Lee, Jae-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.273-282
    • /
    • 2010
  • The purposes of this study are to verify the existing model and to propose a rational model for the fracture characteristic of reinforcing steel which is manufactured in Korea being subjected to cyclic loading. This investigation deals with modeling of the low-cycle fatigue behavior for longitudinal reinforcement steel of reinforced concrete bridge substructure (piles and columns of piers). The proposed low-cycle model of longitudinal steel is modeled based on 81 experimental data. The non-linear analysis program was developed using the proposed low-cycle model. The non-linear analysis are applied to the 6 circular bridge column test results and the accuracy of proposed model is discussed.

Effects of Thermal Aging on the Fracture Characteristic in the Dissimilar Welds (CF8M과 SA508 용접재의 열화에 따른 파괴특성 평가)

  • Woo, Seung-Wan;Kwon, Jae-Do;Choi, Sung-Jong;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.72-77
    • /
    • 2004
  • In a primary reactor cooling system(RCS), a dissimilar weld zone exists between cast stainless steel(CF8M) in a pipe and low-alloy steel(SA508 cl.3) in a nozzle. Thermal aging is observed in CF8M as the RCS is exposed for a long period of time to a reactor operating temperature between 290 and $330^{\circ}C$, while no effect is observed in SA508 cl.3. The specimens are prepared by an artificially accelerated aging technique maintained for 300, 1800 and 3600 hrs at $430^{\circ}C$, respectively. The specimens for elastic-plastic fracture toughness tests are prepared one type, which notch is created in the heat affected zone(HAZ) of CF8M. And, the specimens for fatigue crack growth tests are prepared in three classes, which notches are created at the center of deposited zone, the HAZ of CF8M, and the HAZ of SA508 cl.3. From the experiments, the J-integral values with the increase of aging time decrease, and the differences of the fatigue crack growth behaviors are relatively small in the three classes specimens.

  • PDF

Fatigue Crack Closure and Propagation Behavior Under Mixed-Mode Loading Observed by the Direct Measuring Method (직접측정법을 이용한 혼합모드 하중 하에서 피로균열의 닫힘과 전파거동)

  • Song Sam Hong;Seo Ki Jeong;Lee Jeong Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.152-158
    • /
    • 2005
  • The stress conditions acting on the practical structure are complex, and thus most cracks existing in the practical structures are under mixed-mode loading conditions. The effect of shear load component of mixed-mode loading acts more greatly in the stage of crack initiation and initial propagation than crack propagation stage. Hence, research on the behavior in the stage of crack initiation and initial propagation need to be examined in order to evaluate behavior of mixed-mode fatigue cracks. In this study, the crack tip displacement(CTD) was measured by using the direct measuring method(DMM). We examined the behavior at crack tip by determining crack opening load$(P_{op})$. From the test results, the propagation behavior of mixed-mode fatigue cracks was evaluated by considering mixed-mode crack closure. Also, we examined the characteristic of crack propagation under mixed-mode loading with crack propagation direction.