• Title/Summary/Keyword: Fatigue Crack Propagation

Search Result 727, Processing Time 0.028 seconds

A Study on the Fatigue Crack Propagation Behavior of Cr-Mo-V Alloy with Micro Defects at High Temperature. (미소 원공결함을 갖는 Cr-Mo-V강의 고온피로 크랙전파거동)

  • Song, Samhong;Kang, Myungsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.70-77
    • /
    • 1996
  • Fatigue tests were carried out at high temperature on a Cr-Mo-V steel in order to assess the fatigue life of components used in power plants. The characteristics of high temperature fatigue were divided in terms of cycle-dependent fatigue and time-dependent fatigue, each crack propagation rate was examined with respect to fatigue J-integral range, .DELTA. J$_{f}$and creep J-integral range, .DELTA. J$_{c}$. The fatigue life was evaluated by analysis of J-integral value at the crack tip with a dimensional finite element method. The results obtained from the present study are summarized as follows : The propagation characteristics of high temperature fatigue cracks are determined by .DELTA. J$_{f}$for the PP(tensile plasticity-compressive plasticity deformation) and PC(tensile plasticity - compressive creep deformation) stress waveform types, and by .DELTA. J$_{c}$for the CP(tensile creep- compressive plasticity deformation) stress waveform type. The crack propagation law of high temperature fatigue is obtained by analysis of J-integral value at the crack tip using the finite element method and applied to examine crack propagation behavior. The fatigue life is evaluated using the results of analysis by the finite element method. The predicted life and the actual life are close, within a factor of 2.f 2.f 2.

  • PDF

Corrosion Fatigue Cracking Propagation Characteristics and its Protection for the AL-Alloys of Shipbuilding (선박용 알루미늄 합금재의 부식피로균열 진전특성과 그 억제에 관한 연구)

  • Lim, Uh-Joh;Kim, Soo-Byung;Lee, Jin-Yel
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.2
    • /
    • pp.87-104
    • /
    • 1989
  • Recently, with the tendency of more lightening, high-strength and high-speed in the marine industries such as marine structures, ships and chemical plants, the use of the aluminium Alloy is rapidly enlarge and there occurs much interest in the study of corrosion fatigue crack characteristics. In this paper, the initiation of surface crack and the propagation characteristics on the base metal and weld zone of 5086-H116 Aluminium Alloy Plate which is one of the Al-Mg serious alloy(A5000serious) used most when building the special vessels, were investigated by the plane bending corrosion fatigue under the environments of marine, air and applying cathodic protection. The effects of various specific resistances on the initiation, propagation behavior of corrosion fatigue crack and corrosion fatigue life in the base metal and heat affected zone were examined and its corrosion sensitivity was quantitatively obtained. The effects of corrosion on the crack depth in relation to the uniform surface crack length were also investigated. Also, the structural, mechanical and electro-chemical characteristics of the metal at the weld zone were inspected to verify the reasons of crack propagation behavior in the corrosion fatigue fracture. In addition, the effect of cathodic protection in the fracture surface of weld zone was examined fractographically by Scanning Electron Microscope(S.E.M.). The main results obtained are as follows; (1) The initial corrosion fatigue crack sensitibity under specific resistance of 25Ω.cm% show 2.22 in the base metal and 19.6 in the HEZ, and the sensitivity decreases as specific resistance increases (2) By removing reinforcement of weldment, the initiation and propagation of corrosion crack in the HAZ are delayed, and corrosion fatigue life increases. (3) As specific resistance decreases, the sensitivity difference of corrosion fatigue life in the base metal and HAZ is more susceptible than that of intial corrosion fatigue crack. (4) Experimental constant, m(Paris' rule) in the marine environment is in the range of about 3.69 to 4.26, and as specific resistance increases, thje magnitude of experimental constant, also increases and the effect by corrosion decreases. (5) Comparing surface crack length with crack depth, the crack depth toward the thickness of specimen in air is more deeply propagated than that in corrosion environment. (6) The propagation particulars of corrosion fatigue crack for HAZ under initial stress intensity factor range of $\Delta$k sub(li) =27.2kgf.mm super(-3/2) and stress ratio of R=0 shows the retardative phenomenon of crack propagation by the plastic deformation at crack tip. (7) Number of stress cycles to corrosion fatigue crack initiation of the base metal and the welding heat affected zone are delayed by the cathodic protection under the natural sea water. The cathodic protection effect for corrosion fatigue crack initiation is eminent when the protection potential is -1100 mV(SCE). (8) When the protection potential E=-1100 mV(SCE), the corrosion fatigue crack propagation of welding heat affected zone is more rapid than that of the case without protection, because of the microfissure caused by welding heat cycle.

  • PDF

Behavior of Fatigue Crack Propagation of Micro-Hole and Micro-Slit Specimensns - For High-Frequency Heat Treantment Specimens - (微小圓孔 및 微小슬릿材의 疲勞크랙 傳播擧動)

  • 송삼홍;윤명진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.78-85
    • /
    • 1986
  • This study has been made to investigate Behavior of the fatigue crack propagation for the purpose of taking into consideration the fatigue behavior Which initiate and propagate in tip of defect of the defected specimens, Which Contain the micro-hole or micro-slit. Especially, the specimens have been conducted with high-freguency heat treatment of 850.deg. C, 1050.deg. C to consider strength elevation of defected specimens. The results of this study are as follow; (1) The case of the same in the length of crack, the fatigue crack propagation rate of the micro-slit is always faster than that of micre-hole. But, the first step of the fatigue crack propagation it is not always so. (2) Fatigue crack propagation rate of specimens with micro-slit or micro-hole which have been treated with high-frequency heat treatment satisfy the following formula between the fatigue crack propagation rate and nominal stress; dl/dN .var..sigma.$^{m}$ *l$^{n}$ .

Effects of $K_{II}$ on fatigue crack propagation behavior of wedzone in generally rolled steel for marine structure (박용 구조물용 일반압연강 용접부의 피로균열 전파거동에 미치는 $K_{II}$의 영향)

  • 한문식;김상철
    • Journal of Welding and Joining
    • /
    • v.6 no.3
    • /
    • pp.43-55
    • /
    • 1988
  • An experimental study was carried out to identify the fatigue fractue behavior of weld zone in generally rolled steel for marine structure. The bending an shear loads were applied simultaneously on the specimens to simulate real load condition for marine structure. The effect of the stress intensity factor under mode I with II loading condition on the initiation and the propagation of a crack were investigated, with particular emphaiss on mode II. When the $K_{II}$ stress intensiy factor in mode II was applied under mode I load condition, the growth behavior of a crack seems to be affected mainly by the anisotropic characteristic of materials. Especially, when the crack was located in and near the weld zone and parallel to th weld line, the propagation behaviour was turned out to be quite different from that of the base metal along the direction transverse to the weld line. In general, the propagation veiocity of the cracks in and near the weld zone was found to be slower that the velocity in base metal.

  • PDF

The Effects of the Microstructural Change of Dual Phase Steel on Fatigue Fracture Propagation (복합조직강의 미시조직변화가 피로파괴전파에 미치는 영향)

  • Oh, Sae-Wook;Kim, Ung-Jip
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.58-66
    • /
    • 1991
  • Not only difference of fatigue crack growth and propagation behavior resulted from the grain size, the hardness ratio and volume fraction in M.E.F. dual phase steel composed of martensite in hard phase and ferrite in soft phase, but also the effects of the plastic constraint were investigated by fracture mechanics and microstructural method. The main results obtained are as follows: 1) The fatigue endurance of M.E.F. steel increases with decreasing the grain size, increasing the ratio of hardness and volume fraction. 2) The initiation of slip and crack occures faster as the stress level goes higher. These phenomena result from the plastic constraint effect of the second phase. 3) The crack propagation rate in the constant stress level is faster as the grain size gets larger, the ratio of hardness lower and volume fraction smaller.

  • PDF

A Stochastic Study on Fatigue Crack Propagation and Retardation Behavior of Pressure Vessel Steel (압력용기용강의 피로균열전파 및 지연거동에 관한 확률통계적 연구)

  • 김선진;남기우;김부안
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.132-141
    • /
    • 1995
  • The purpose of the present study is to investigate the statistical characteristics of m and C in the fatigue crack propagation law, da/dN=C(.DELTA.K)/sup m/ and to studies on the randomness of fatigue crack propagation and retardation behavior. Fatigue tests were perfomed on 32 CT specimens of SPV50 steel under the same one condition. First, the value of m and C were determined for each specimen, and all the data were analyzed statistically. second, the material's resistance to fatigue crack propagation is modeled as a stchastic process, which varies randomly along the crack path. The statistical analysis of the material resistance is performed with the data obtained by constant load controlled tests. Finally, retardation behavior was examined experimentally by using a CT specimen, and a retardation parameters were analyzed statistically.

  • PDF

Effects of Microstructure on the Fatigue Crack Propagation Resistance in Dual Phase Steel (複合組織鋼 의 피勞균열進展抵抗 에 미치는 微視組織 의 영향)

  • 김정규;황돈영;박승락
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.34-40
    • /
    • 1984
  • In this study, martensite-ferrite dual phase steel composed of martensite in hard phase and ferrite in soft phase is made as model material, and the difference of fatigue crack propagation behavior resulted from the structural size is investigated by fracture mechanics and microstructural method. The main results obtained are as follows; 1)Fatigue crack propagation rate is influenced by ferrite grain size. In other words, in the low .DELTA. K region fatigue crack propagation rate is decreased with decreasing of grain size but the difference of propagation rate resulted from the structural size is decreased as .DELTA.K is increased. 2)The above result is explained by the degree of crack arrest effect of second phase for fatigue crack propagation depending on the ratio of reversed plastic zone size to ferrite grain size.

Effect of Specimen Thickness on Probability Distribution of Fatigue Crack Propagation Behavior in Magnesium Alloy AZ31 (AZ31 마그네슘합금 시편의 두께가 피로균열진전거동의 확률분포에 미치는 영향)

  • Choi, Seon-Soon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.395-400
    • /
    • 2009
  • As the variables affecting the fatigue behavior have uncertainty, the fatigue crack propagation is stochastic in nature. Therefore, the fatigue life prediction is critical for the design and the maintenance of many structural components. In this study, fatigue experiments are conducted on the specimens of magnesium alloy under the different thicknesses of specimen. The effects of specimen thickness on the probability distribution of the fatigue crack propagation life and the crack size are estimated experimentally. The probability distribution of the crack size and the fatigue life for different specimen thicknesses are investigated by Anderson-Darling test and the best fit for those probability distributions are also presented.

  • PDF

A Study on the Corner Crack Propagation by Plane Bending Fatigue in Butt Welded Joints of Steel (平面굽힘 疲勞荷重 에 의한 鋼熔接部 의 모서리균열 傳파特性)

  • 김영식;조상명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.3
    • /
    • pp.232-238
    • /
    • 1982
  • The behavior of corner crack propagation by unidirectional plane bending fatigue was investigated in the butt welded joints of SS41 and SM50 steel plates including an edge through-thickness notch. The properties of fatigue crack propagation were inspected in the weld metal, heat-affected zone, and base metal of the welded joints. Main results obtained are as follows; (1) When a plate with an edge through-thickness notch is loaded by plane bending fatigue in indirection, the 2 variant corner cracks on the upper and lower edge of the plate are initiated and propagated respectively from the notch. (2) In case of a specimen containing a corner crack, it is more reasonable to estimate the crack propagation rate by area of fracture surface than by crack surface length. (3) The rate of fatigue crack propagation becomes faster in the following order; weld metal, heat-affected zone, and base metal. (4) The specimen including reinforcement shape is rapidly failed throughout bond due to effect of its shape when the repeated load exceeds a certain cycle.

Fatigue crack propagation life evaluation of an autofrettaged thick-walled cylinder (자긴가공된 두꺼운 실린더의 피로균열 전파수명평가)

  • Lee, Song-In;Kim, Jin-Yong;Jeong, Se-Hui;Go, Seung-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.321-329
    • /
    • 1998
  • To ensure the structural integrity of the autofrettaged thick-walled cylinder subjected to cyclic internal pressure loading, the fatigue crack propagation life of the cylinder was evaluated. Stress intensity factors of the external cracked cylinder due to internal pressure and autofrettage loadings were calculated using the finite element method. The fatigue crack propagation lives of the cylinder based on the fracture mechanics concepts were predicted and compared to the experimental fatigue lives evaluated from the C-shaped simulation specimens. There were good correlations between the predicted and experimental fatigue lives within a factor of 3 for the single and double grooved C-shaped simulation specimens. Predicted fatigue crack propagation lives of the double grooved cylinders were about 1.5-5 times longer than those of the single grooved cylinders depending on the levels of autofrettage.