• Title/Summary/Keyword: Fat signal fraction

Search Result 3, Processing Time 0.017 seconds

Fat Quantification in the Vertebral Body: Comparison of Modified Dixon Technique with Single-Voxel Magnetic Resonance Spectroscopy

  • Sang Hyup Lee;Hye Jin Yoo;Seung-Man Yu;Sung Hwan Hong;Ja-Young Choi;Hee Dong Chae
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.126-133
    • /
    • 2019
  • Objective: To compare the lumbar vertebral bone marrow fat-signal fractions obtained from six-echo modified Dixon sequence (6-echo m-Dixon) with those from single-voxel magnetic resonance spectroscopy (MRS) in patients with low back pain. Materials and Methods: Vertebral bone marrow fat-signal fractions were quantified by 6-echo m-Dixon (repetition time [TR] = 7.2 ms, echo time (TE) = 1.21 ms, echo spacing = 1.1 ms, total imaging time = 50 seconds) and single-voxel MRS measurements in 25 targets (23 normal bone marrows, two focal lesions) from 24 patients. The point-resolved spectroscopy sequence was used for localized single-voxel MRS (TR = 3000 ms, TE = 35 ms, total scan time = 1 minute 42 seconds). A 2 × 2 × 1.5 cm3 voxel was placed within the normal L2 or L3 vertebral body, or other lesions including a compression fracture or metastasis. The bone marrow fat spectrum was characterized on the basis of the magnitude of measurable fat peaks and a priori knowledge of the chemical structure of triglycerides. The imaging-based fat-signal fraction results were then compared to the MRS-based results. Results: There was a strong correlation between m-Dixon and MRS-based fat-signal fractions (slope = 0.86, R2 = 0.88, p < 0.001). In Bland-Altman analysis, 92.0% (23/25) of the data points were within the limits of agreement. Bland-Altman plots revealed a slight but systematic error in the m-Dixon based fat-signal fraction, which showed a prevailing overestimation of small fat-signal fractions (< 20%) and underestimation of high fat-signal fractions (> 20%). Conclusion: Given its excellent agreement with single-voxel-MRS, 6-echo m-Dixon can be used for visual and quantitative evaluation of vertebral bone marrow fat in daily practice.

Background Gradient Correction using Excitation Pulse Profile for Fat and $T_2{^*}$ Quantification in 2D Multi-Slice Liver Imaging (불균일 자장 보정 후처리 기법을 이용한 간 영상에서의 지방 및 $T_2{^*}$ 측정)

  • Nam, Yoon-Ho;Kim, Hahn-Sung;Zho, Sang-Young;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.6-15
    • /
    • 2012
  • Purpose : The objective of this study was to develop background gradient correction method using excitation pulse profile compensation for accurate fat and $T_2{^*}$ quantification in the liver. Materials and Methods: In liver imaging using gradient echo, signal decay induced by linear background gradient is weighted by an excitation pulse profile and therefore hinders accurate quantification of $T_2{^*}$and fat. To correct this, a linear background gradient in the slice-selection direction was estimated from a $B_0$ field map and signal decays were corrected using the excitation pulse profile. Improved estimation of fat fraction and $T_2{^*}$ from the corrected data were demonstrated by phantom and in vivo experiments at 3 Tesla magnetic field. Results: After correction, in the phantom experiments, the estimated $T_2{^*}$ and fat fractions were changed close to that of a well-shimmed condition while, for in vivo experiments, the background gradients were estimated to be up to approximately 120 ${\mu}T/m$ with increased homogeneity in $T_2{^*}$ and fat fractions obtained. Conclusion: The background gradient correction method using excitation pulse profile can reduce the effect of macroscopic field inhomogeneity in signal decay and can be applied for simultaneous fat and iron quantification in 2D gradient echo liver imaging.

Correlation Analysis between Fat Fraction and Bone Mineral Density Using the DIXON Method for Fat Dominant Tissue in Knee Joint MRI: A Preliminary Study (지방우세 딕슨기법을 이용한 슬관절 자기공명영상 지방신호분율과 골밀도 간의 상관관계 분석: 예비 연구)

  • Sung Hyun An;Kyu-Sung Kwack;Sunghoon Park;Jae Sung Yun;Bumhee Park;Ji Su Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.2
    • /
    • pp.427-440
    • /
    • 2023
  • Purpose This study aimed to investigate the correlation between the fat signal fraction (FF) of the fat-dominant bone tissue of the knee joint, measured using the MRI Dixon method (DIXON) technique, and bone mineral density (BMD). Materials and Methods Among the patients who underwent knee DIXON imaging at our institute, we retrospectively analyzed 93 patients who also underwent dual energy X-ray absorptiometry within 1 year. The FFs of the distal femur metaphyseal (Fm) and proximal tibia metaphyseal (Tm) were calculated from the DIXON images, and the correlation between FF and BMD was analyzed. Patients were grouped based on BMD of lumbar spine (L), femoral neck (FN), and common femur (FT) respectively, and the Kruskal-Wallis H test was performed for FF. Results We identified a significant negative correlation between TmFF and FN-BMD in the entire patient group (r = -0.26, p < 0.05). In female patients, TmFF showed a negative correlation with FN-BMD, FT-BMD, and L-BMD (r = -0.38, 0.28 and -0.27, p < 0.05). In male patients, FmFF was negatively correlated with only FN-BMD and FT-BMD (r = -0.58 and -0.42, p < 0.05). There was a significant difference in the TmFF between female patients grouped by BMD (p < 0.05). In male patients, there was a significant difference in FmFF (p < 0.05). Conclusion Overall, we found that FF and BMD around the knee joints showed a negative correlation. This suggests the potential of FF measurement using DIXON for BMD screening.