• 제목/요약/키워드: Fasting urine

검색결과 42건 처리시간 0.017초

Prediction of net energy values in expeller-pressed and solvent-extracted rapeseed meal for growing pigs

  • Li, Zhongchao;Lyu, Zhiqian;Liu, Hu;Liu, Dewen;Jaworski, Neil;Li, Yakui;Lai, Changhua
    • Animal Bioscience
    • /
    • 제34권1호
    • /
    • pp.109-118
    • /
    • 2021
  • Objective: The objective of this study was to determine net energy (NE) of expeller-press (EP-RSM) and solvent-extracted rapeseed meal (SE-RSM) and to establish equations for predicting the NE in rapeseed meal (RSM) fed to growing pigs. Methods: Thirty-six barrows (initial body weight [BW], 41.1±2.2 kg) were allotted into 6 diets comprising a corn-soybean meal basal diet and 5 diets containing 19.50% RSM added at the expense of corn and soybean meal. The experiment had 6 periods and 6 replicate pigs per diet. During each period, the pigs were individually housed in metabolism crates for 16 days which included 7 days for adaption to diets. On day 8, pigs were transferred to respiration chambers and fed their respective diet at 2,000 kJ metabolizable energy (ME)/kg BW0.6/d. Feces and urine were collected, and daily heat production was measured from day 9 to 13. On days 14 and 15, the pigs were fed at 890 kJ ME/kg BW0.6/d and fasted on day 16 for evaluation of fasting heat production (FHP). Results: The FHP of pigs averaged 790 kJ/kg BW0.6/d and was not affected by the diet composition. The NE values were 10.80 and 8.45 MJ/kg DM for EP-RSM and SE-RSM, respectively. The NE value was positively correlated with gross energy (GE), digestible energy (DE), ME, and ether extract (EE). The best fit equation for NE of RSM was NE (MJ/kg DM) = 1.14×DE (MJ/kg DM)+0.46×crude protein (% of DM)-25.24 (n = 8, R2 = 0.96, p<0.01). The equation NE (MJ/kg DM) = 0.22×EE (% of DM)-0.79×ash (% of DM)+14.36 (n = 8, R2 = 0.77, p = 0.018) may be utilized to quickly determine the NE in RSM when DE or ME values are unavailable. Conclusion: The NE values of EP-RSM and SE-RSM were 10.80 and 8.45 MJ/kg DM. The NE value of RSM can be well predicted based on energy content (GE, DE, and ME) and proximate analysis.

일부 젊은 성인여자의 Fe, Zn, Cu, Mn, Se, Mo 및 Cr의 식사섭취, 혈청농도 및 소변배설 (Dietary Intakes, Serum Concentrations, and Urinary Excretions of Fe, Zn, Cu, Mn, Se, Mo, and Cr of Korean Young Adult Women)

  • 김경희;임현숙
    • Journal of Nutrition and Health
    • /
    • 제39권8호
    • /
    • pp.762-772
    • /
    • 2006
  • This study was conducted to investigate dietary intakes, serum concentrations, and urinary excretions of iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), selenium (Se), molybdenum (Mo), and chromium (Cr) of Korean young adult women. A total of 19 apparently healthy young adult women aged in their twenties or thirties participated voluntarily. One-tenth of all foods they consumed for 3 consecutive days were collected, all urine excreted for the same 3 days was gathered, and fasting venous blood was withdrawn for the trace mineral analyses. Of the food, blood, and urine samples, the contents of Zn, Cu, Mn, Se, Mo, and Cr were analyzed by inductively coupled plasma-mass spectroscopy (ICP-MS) and that of Fe by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) after wet digestion. The intake of Fe, $6.94{\pm}2.18mg$, did not meet the estimated average requirement (EAR) for Korean women aged 20-29 years old. On the contrary, the intakes of Zn ($9.35{\pm}4.95mg$), Cu ($1.18{\pm}0.26mg$), and Mn ($3.69{\pm}0.69mg$) were sufficient for each respective EAR. However, some of the subjects did not take the EAR for Zn. The Se intake, $41.93{\pm}9.28{\mu}g$, however, was almost similar to the EAR for Se. Although there are no references for Mo and Cr, the intakes of these minerals ($134.0{\pm}49.1\;and\;136.5{\pm}147.9{\mu}g$, respectively) seemed to be excessively sufficient. Serum Fe concentration, $88.7{\pm}36.8{\mu}g/dL$, seemed to be a little bit lower than its reference median but within its normal range. Approximately one-fourth of the subjects were in anemic determined by Hb and Hct and below the deficiency serum level of Fe, $60{\mu}g/dL$. In addition, serum Se concentration, $3.73{\pm}0.60{\mu}g/dL$, was also below its reference median and normal range. However, serum concentrations of Zn ($99.6{\pm}30.6{\mu}g/dL$) and Mo ($0.25{\pm}0.10{\mu}g/dL$) were fairly good compared to each reference median. The status of Cu could be determined as good although its serum concentration ($91.6{\pm}14.6{\mu}g/dL$) was slightly below its reference median. Since there are no decisive reference values, it was not easy to evaluate serum concentrations of Mn ($0.93{\pm}0.85{\mu}g/dL$) and Cr ($8.60{\pm}7.25{\mu}g/dL$). But Mn and Cr status seemed to be adequate. Urinary Fe excretion, $4.48{\pm}1.98{\mu}g/dL$, was pretty much lower than its reference and that of Se, $2.45{\pm}1.17{\mu}g/dL$, was also lower than its average. On the other hand, those of Zn ($42.95{\pm}20.47{\mu}g/dL$) and Cu ($5.68{\pm}1.50{\mu}g/dL$) were flirty good. In case of Mn, urinary excretion, $0.31{\pm}0.09{\mu}g/dL$, was much greater than its reference. Urinary excretions of Mo ($7.48{\pm}2.95{\mu}g/dL$) and Cr ($1.37{\pm}0.41{\mu}g/dL$) were very higher compared to each reference. The results of this study revealed that Korean young adult women were considerably poor in Fe status, a bit inadequate in Se status, partly inadequate in Zn status, and flirty good in Cu, Mn, Mo and Cr status. However, there was a problem of excessive intakes of Mo and Cr. It, therefore, should be concerned to increase the intakes of Fe, Se and Zn but to decrease Mo and Cr consumption for young adult women.