• Title/Summary/Keyword: Fastening

Search Result 295, Processing Time 0.024 seconds

Accurate Fastening of Blind Rivet Nuts: A Study (블라인드 리벳 너트 체결 적합성에 관한 연구)

  • Kim, C.;Gu, B.;Yi, S.;Choi, J.M.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.331-337
    • /
    • 2020
  • Blind rivet nuts (BRNs) are increasingly used in automotive industry because unlike conventional bolt fastening, BRN fastening requires access from one side only. Generally, fastening is conducted using automated units, but manual fastening may be resorted to in case of small quantities. Since the fastening direction is not exactly perpendicular to the sheet metal, the BRN axis is tilted with respect to the plate and may result in damage or incomplete fastening. As the tilt angle (clamping angle α) increases, undesired plate deformation occurs and the contact area of the plate with the BRN fastening area decreases, reducing the clamping effect. In this study, the reduction of the clamping effect with the α was investigated to ensure stable fastening force. M6 BRNs were used in the tests. The fastening force was measured as follows: the plate was cut in half through the center of the hole; the BRN was inserted into the hole and fastened; and the clamping angle a was measured (values, 0° ≤ α ≤ 9°). The force leading to the separation of the halves was measured using a universal testing machine (UTM). The maximum α range, in which the fastening force remains stable, was determined. Finite element (FE) analysis confirmed that the fastening force decreases approximately linearly with increasing α. Based on the experiment and FE analysis using various α, the fastening force was found to decrease with α. Further, the maximum tolerance for α that provides secure fastening without damage is suggested.

A Study on the Development of New Rail Fastening Devices (철도레일체결장치의 국내 독자모델 개발에 관한 연구)

  • Kwon, Tae-Soo;Cho, Yong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.819-824
    • /
    • 2001
  • Most of rail fastening system used in the interior have depended on the foreign technologies. In this study, new rail fastening device is developed to estabilish the domestic technology. Especially, Pandrol and Vossloh rail fastening devices are analyzed to utilize the weak and strong points. New rail fastening device is designed to combine advantages of two other foreign devices.

  • PDF

A Study on Designing Key Fastening Parts for Compatibility of Teaching-Aids-Robots (교구로봇 호환성을 위한 체결구 부품 설계에 관한 연구)

  • Moon, Jeon-Il;Ryuh, Young-Sun;An, Jin-Ung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.10-17
    • /
    • 2011
  • This paper deals with researching and designing the fastening parts to be used in order to assemble various Teaching Aids Robots (or Hands-on Robots) with originally incompatible parts supplied by different manufacturers. The suggested fastening parts provide the compatibility among Teaching Aids Robots even though the educational robot customers use incompatible parts from different companies. The designed fastening parts are classified into four set groups such as frame set, sliding-bar set, connector set, and set of chuck and rivet/bolt. Each set of the fastening parts reflects the needs collected from the users, and then some portion of new idea has been added to implement the needs. In this paper, the examples of the Teaching Aids Robots which are assembled with both commercial parts and the designed parts are presented in order to evaluate the compatibility and usability of the suggested fastening parts. As a result, both compatibility and usability of the fastening parts suggested in this paper were proved. The designed fastening parts have been distributed to more than 100 elementary schools nationwide.

Development of turnout on concrete track using Fast clip (Fast clip을 적용한 콘크리트궤도용 분기기 개발)

  • Hwang, Kwang-Ha;Ryou, Ki-Tae;Park, Chun-Bok;Park, Kwang-Ryoun;Yun, Byung-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1002-1008
    • /
    • 2011
  • Turnout is a mechanical installation enabling railway trains to be guided from one track to another at a railway junction. there are classified variously according to rail type, sleeper type, fastening system, track type. Construction of concrete track are on the increase recently to secure the safety of track structure as well as to reduce the maintenance cost. SFC fastening system used the plain track a lot and for those reasons, The fast clip turnout demand growing to improving efficiency of the maintenance cost by unification of fastening clip on whole line. in this study is about development of the fastening system for new turnout using fast clip. this fastening system assembled elasticity pad underneath a base plate. its can change stiffness how to adjust contact surface area of elasticity pad Developed fastening system have passed test according to rule of KRS-TR0014-09R (rail fastening system) and Performance Certification by KR.

  • PDF

Effect on the Stress and Displacement of Aluminum Profiles Fastening Method (알루미늄 프로파일의 체결방법이 응력과 변위에 미치는 영향)

  • Hur, Jang-Wook;Shin, Baek-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.99-104
    • /
    • 2015
  • This study analyzed the effects on displacement and stress as a result of improving the profile fastening method targeting rectangular-shaped and cube-shaped specimens. For the rectangular-shaped specimens, the improved fastening method reduced maximum displacement to 41.7% and maximum stress to 18.3% compared to the existing fastening method. For the cube-shaped specimens, maximum displacement and maximum stress results were found to be similar to those of the rectangular-shaped specimens. Thus, as a result of comparing the stress and displacement of the existing and improved fastening methods, it was found that the improved fastening method is superior to the existing fastening method in terms of load support.

An Experimental Study of Fastening System on CWR(Continuous Welded Rail) Track Stability (장대레일 궤도의 안정성에 미치는 체결장치의 실험적 연구)

  • Kim, Jung-Hun;Han, Sang-Yun;Lim, Nam-Hyoung;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.317-324
    • /
    • 2007
  • Until now, the railway has been constructed using track with jointed rails of relatively short lengths to allow thermal expansion in hot summer months. These joints weaken the track structurally and increase track maintenance cost and power consumption of the running train. The CWR(Continuous Welded Rail) Track is the solution of these drawbacks. Although the CWR track not only reduces the track maintenance cost but also increases the life cycle of track components, the stability of the track is highly affected by change of temperatures and vehicle load. A three dimensional nonlinear analysis which considers rail, fastening system and tie has been performed to understand structural behavior of the CWR track. In this case, the translational and rotational stiffness values of fastening system have not been studied. The fastening system makes ties and rails connect. In this study, the stiffness values of various types of fastening systems which consist of clips, rail-pads and insulators are determined by the experiment. The experimental results of the fastening system are compared with the results of parametric study that is performed to investigate the sensitivity of fastening system on stability of CWR track.

  • PDF

The Parametric Study on the Performance Characteristics of Elastic Rail Fastening System on the Sharp Curved Track (급곡선 탄성레일체결장치의 거동특성에 미치는 매개변수 연구)

  • Baik, Chan-Ho;Joo, Bong-Gyu;Choi, Jung-Youl;Choi, Il-Yoon;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2163-2173
    • /
    • 2011
  • In this study, the deformations and stresses occurred in the elastic rail fastening system were evaluated according to applied extreme track forces based on various field conditions, track curvature and poor properties. The purpose of this study is to establish a method for efficient management and suggest guide line for track construction in order to secure the performance quality of the elastic rail fastening system on the sharp curved track.. Therefore, initial construction qualities of rail and concrete bed, initial clamping force and applied extreme track forces were used into experiment as several parameters. Using these test results, the performance characteristics of the elastic rail fastening system were also evaluated. As a result, it suggested the method to secure long-term durability of fastening system and comparing sharp curved track to results on field test.

  • PDF

An Experimental Study of Fastening System for Vertical Directions (체결장치의 수직 방향에 대한 실험적 연구)

  • Kim, Jung-Hun;Han, Sang-Yun;Lim, Nam-Hyoung;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1312-1319
    • /
    • 2006
  • Several countries including Korea, Japan and European countries have reached the stage of planning, constructing their high-speed railway systems. High-speed train will become a key tool for intercity passenger transportation. Before that, safety of high-speed train must be secured. It is connected directly with track. The track is composed of ballast, tie, fastening and rail. Also, the fastening system makes tie and rail connect. In this case of the railway bridges used concrete slab track, the deflection of the bridge cause uplife of the rail at the areas between segments. In the structural analysis about it, stiffness of the fastening systems has been assumed. Therefore, use of the stiffness according to an experimental study needs. In this study, the stiffness values of various types of fastening systems are determined by the experiment and the structural behavior of fastening system is analyzed.

  • PDF

Effect of nonlinearity of fastening system on railway slab track dynamic response

  • Sadeghi, Javad;Seyedkazemi, Mohammad;Khajehdezfuly, Amin
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.709-727
    • /
    • 2022
  • Fastening systems have a significant role in the response of railway slab track systems. Although experimental tests indicate nonlinear behavior of fastening systems, they have been simulated as a linear spring-dashpot element in the available literature. In this paper, the influence of the nonlinear behavior of fastening systems on the slab track response was investigated. In this regard, a nonlinear model of vehicle/slab track interaction, including two commonly used fastening systems (i.e., RFFS and RWFS), was developed. The time history of excitation frequency of the fastening system was derived using the short time Fourier transform. The model was validated, using the results of a comprehensive field test carried out in this study. The frequency response of the track was studied to evaluate the effect of excitation frequency on the railway track response. The results obtained from the model were compared with those of the conventional linear model of vehicle/slab track interaction. The effects of vehicle speed, axle load, pad stiffness, fastening preload on the difference between the outputs obtained from the linear and nonlinear models were investigated through a parametric study. It was shown that the difference between the results obtained from linear and nonlinear models is up to 38 and 18 percent for RWFS and RFFS, respectively. Based on the outcomes obtained, a nonlinear to linear correction factor as a function of vehicle speed, vehicle axle load, pad stiffness and preload was derived. It was shown that consideration of the correction factor compensates the errors caused by the assumption of linear behavior for the fastening systems in the currently used vehicle track interaction models.

An Experimental Study of Fastening System for Analysis of Rail Uplifting on Railway Bridge Ends (철도교량 단부 상향력 해석을 위한 체결장치의 실험적 연구)

  • Kim, Jung-Hun;Lim, Nam-Hyoung;Choi, Sang-Hyun;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.307-311
    • /
    • 2007
  • In the case of the railway bridges, uplift forces were occurred at the edge of the segments when vehicular loads were applied. These forces made the compressive and tensile forces occur in the fastening system. Therefore, the structural analysis was performed to investigate the safety of fastening system which was modeled as one directional spring element. In this case, the stiffness of the spring element was obtained from experimental study which was conducted by compressive load. For that reason, to perform rational and exact structural analysis, the translational stiffness of the fastening system obtained from the experimental study applied the tensile load and the rotational stiffness should be considered because it was occurred the tensile force as well as the compressive force in fastening system. In this study, an elastic and inelastic experimental study was performed for six specimens. The translational stiffness along the vertical axis of rail and the rotational stiffness along the strong axis of rail were investigated. Also structural behavior of the fastening system was analyzed.

  • PDF