• Title/Summary/Keyword: Fast encoding

Search Result 318, Processing Time 0.04 seconds

Fractal Coding Method for Fast Encoding and High Compression (고속 및 고압축을 위한 프랙탈 영상 부호화)

  • 김정일
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.3
    • /
    • pp.64-69
    • /
    • 2000
  • This paper proposes a novel fractal coding method for fast encoding and high compression to shorten time to take on fractal encoding by using limited search area. First. the original image is contracted respectively by half and by quarter with the scaling method and bit-plane method. And then, the corresponding domain block of the quarter-sized image which is most similar with one range block of the half-sized image is searched within the limited area in order to reduce the encoding time extremely. As the result of the evaluation, the proposed algorithm provided much shorter encoding time and better compression ratio with a little degradation of the decoded image qualify than Jacquin's method.

  • PDF

Fast Enhancement Layer Encoding Method using CU Depth Correlation between Adjacent Layers for SHVC

  • Kim, Kyeonghye;Lee, Seonoh;Ahn, Yongjo;Sim, Donggyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.260-264
    • /
    • 2013
  • This paper proposes a fast enhancement layer coding method to reduce computational complexity for Scalable HEVC (SHVC) which is based on High Efficiency Video Coding (HEVC). The proposed method decreases encoding time by simplifying Rate Distortion Optimization (RDO)for enhancement layers (EL). The simplification is achieved by restricting CU depths based on the correlation of coding unit (CU) depths between adjacent layers and scalability (spatial or quality) of EL. Comparing with the performance of SHM 1.0 software encoder, the proposed method reduces the encoding time by up to 31.5%.

Early Termination of Block Vector Search for Fast Encoding of HEVC Screen Content Coding

  • Ma, Jonghyun;Sim, Donggyu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.388-392
    • /
    • 2014
  • This paper proposes an early termination method of a block vector search for fast encoding of high efficiency video coding (HEVC) screen content coding (SCC). In the proposed algorithm, two blocks indicated by two block vector predictors (BVPs) were first employed as an intra block copy (IBC) search. If the sum of absolute difference (SAD) value of the block is less than a threshold defined empirically, an IBC BV search is terminated early. The initial threshold for early termination is derived by statistical analysis and it can be modified adaptively based on a quantization parameter (QP). The proposed algorithm is evaluated on SCM-2.0 under all intra (AI) coding configurations. Experimental results show that the proposed algorithm reduces IBC BV search time by 29.23% on average while the average BD-rate loss is 0.41% under the HEVC SCC common test conditions (CTC).

Fast Intra Mode Decision using Transform Coefficients (변환 계수를 이용한 고속 인트라모드 결정법)

  • Hwang Gyu-Yong;Park Jong-Bin;Jeon Byeung-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.255-258
    • /
    • 2006
  • In the H.264/AVC standard, intra prediction increases the coding efficiency of intra macroblocks and by applying rate-distortion optimization to each macroblock, it is possible to choose Inter or Intra encoding adaptively. This sort of encoding scheme, however, increases encoding complexity dramatically and causes troubles in practical applications of the real-time mobile environment. In order to decrease the complexity, variety of methods is proposed but most of those take only its current block into consideration for selecting candidate modes which naturally causes degradation in PSNR (Peak Signal to Noise Ratio). The proposed fast intra mode decision finds the candidate modes by analyzing transformed coefficients of neighboring blocks stored in the buffer at the encoder stage of input sequences. We verify this proposed scheme in complexity, PSNR and bit-rate.

  • PDF

Fast Double Random Phase Encoding by Using Graphics Processing Unit (GPU 컴퓨팅에 의한 고속 Double Random Phase Encoding)

  • Saifullah, Saifullah;Moon, In-Kyu
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.343-344
    • /
    • 2012
  • With the increase of sensitive data and their secure transmission and storage, the use of encryption techniques has become widespread. The performance of encoding majorly depends on the computational time, so a system with less computational time suits more appropriate as compared to its contrary part. Double Random Phase Encoding (DRPE) is an algorithm with many sub functions which consumes more time when executed serially; the computation time can be significantly reduced by implementing important functions in a parallel fashion on Graphics Processing Unit (GPU). Computing convolution using Fast Fourier transform in DRPE is the most important part of the algorithm and it is shown in the paper that by performing this portion in GPU reduced the execution time of the process by substantial amount and can be compared with MATALB for performance analysis. NVIDIA graphic card GeForce 310 is used with CUDA C as a programming language.

  • PDF

Fast CU Encoding Schemes Based on Merge Mode and Motion Estimation for HEVC Inter Prediction

  • Wu, Jinfu;Guo, Baolong;Hou, Jie;Yan, Yunyi;Jiang, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1195-1211
    • /
    • 2016
  • The emerging video coding standard High Efficiency Video Coding (HEVC) has shown almost 40% bit-rate reduction over the state-of-the-art Advanced Video Coding (AVC) standard but at about 40% computational complexity overhead. The main reason for HEVC computational complexity is the inter prediction that accounts for 60%-70% of the whole encoding time. In this paper, we propose several fast coding unit (CU) encoding schemes based on the Merge mode and motion estimation information to reduce the computational complexity caused by the HEVC inter prediction. Firstly, an early Merge mode decision method based on motion estimation (EMD) is proposed for each CU size. Then, a Merge mode based early termination method (MET) is developed to determine the CU size at an early stage. To provide a better balance between computational complexity and coding efficiency, several fast CU encoding schemes are surveyed according to the rate-distortion-complexity characteristics of EMD and MET methods as a function of CU sizes. These fast CU encoding schemes can be seamlessly incorporated in the existing control structures of the HEVC encoder without limiting its potential parallelization and hardware acceleration. Experimental results demonstrate that the proposed schemes achieve 19%-46% computational complexity reduction over the HEVC test model reference software, HM 16.4, at a cost of 0.2%-2.4% bit-rate increases under the random access coding configuration. The respective values under the low-delay B coding configuration are 17%-43% and 0.1%-1.2%.

Fast Prediction Mode Decision in HEVC Using a Pseudo Rate-Distortion Based on Separated Encoding Structure

  • Seok, Jinwuk;Kim, Younhee;Ki, Myungseok;Kim, Hui Yong;Choi, Jin Soo
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.807-817
    • /
    • 2016
  • A novel fast algorithm is suggested for a coding unit (CU) mode decision using pseudo rate-distortion based on a separated encoding structure in High Efficiency Video Coding (HEVC). A conventional HEVC encoder requires a large computational time for a CU mode prediction because prediction and transformation procedures are applied to obtain a rate-distortion cost. Hence, for the practical application of HEVC encoding, it is necessary to significantly reduce the computational time of CU mode prediction. As described in this paper, under the proposed separated encoder structure, it is possible to decide the CU prediction mode without a full processing of the prediction and transformation to obtain a rate-distortion cost based on a suitable condition. Furthermore, to construct a suitable condition to improve the encoding speed, we employ a pseudo rate-distortion estimation based on a Hadamard transformation and a simple quantization. The experimental results show that the proposed method achieves a 38.68% reduction in the total encoding time with a similar coding performance to that of the HEVC reference model.

Implementation of Fast Infoset Algorithm for Fast Web Services (Fast 웹 서비스를 위한 Fast Infoset 알고리즘 구현)

  • Cho, Tae-Beom;Park, Yeoun-Sik;Jung, Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.131-138
    • /
    • 2007
  • Plain old Web Services came true a services integration with use the XML that will be able to define a platform-independent document format in basic document format. Hut, the XML document decreases the efficiency of the whole application program with connects frequently in relatively slow communication media like network environment, embedded system or use the resource limited small-sized instrument like mobile. In this paper, we implemented the algorism of Fast Infoset, which can convert XML into Fast XML using the Fast Inoset method and PER encoding rules in ASN.1 and constructs Test Bed. Also, it is compared with the existing pure XML message method in difference of process performance after encoding SOAP messages of XML basis when constructing web service.

Fast Mode Decision For Depth Video Coding Based On Depth Segmentation

  • Wang, Yequn;Peng, Zongju;Jiang, Gangyi;Yu, Mei;Shao, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1128-1139
    • /
    • 2012
  • With the development of three-dimensional display and related technologies, depth video coding becomes a new topic and attracts great attention from industries and research institutes. Because (1) the depth video is not a sequence of images for final viewing by end users but an aid for rendering, and (2) depth video is simpler than the corresponding color video, fast algorithm for depth video is necessary and possible to reduce the computational burden of the encoder. This paper proposes a fast mode decision algorithm for depth video coding based on depth segmentation. Firstly, based on depth perception, the depth video is segmented into three regions: edge, foreground and background. Then, different mode candidates are searched to decide the encoding macroblock mode. Finally, encoding time, bit rate and video quality of virtual view of the proposed algorithm are tested. Experimental results show that the proposed algorithm save encoding time ranging from 82.49% to 93.21% with negligible quality degradation of rendered virtual view image and bit rate increment.

Fast CU Decision Algorithm using the Initial CU Size Estimation and PU modes' RD Cost (초기 CU 크기 예측과 PU 모드 예측 비용을 이용한 고속 CU 결정 알고리즘)

  • Yoo, Hyang-Mi;Shin, Soo-Yeon;Suh, Jae-Won
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.405-414
    • /
    • 2014
  • High Efficiency Video Coding(HEVC) obtains high compression ratio by applying recursive quad-tree structured coding unit(CU). However, this recursive quad-tree structure brings very high computational complexity to HEVC encoder. In this paper, we present fast CU decision algorithm in recursive quad-tree structure. The proposed algorithm estimates initial CU size before CTU encoding and checks the proposed condition using Coded Block Flag(CBF) and Rate-distortion cost to achieve the fast encoding time saving. And, intra mode estimation is also possible to be skipped using the CBF values acquired during the inter PU mode estimations. Experiment results shows that the proposed algorithm saved about 49.91% and 37.97% of encoding time according to the weighting condition.