• Title/Summary/Keyword: Fast data acquisition

Search Result 123, Processing Time 0.027 seconds

A Four State Rotational Frequency Detector for Fast Frequency Acquisition

  • Yeo, Hyeop-Goo
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.305-309
    • /
    • 2011
  • This paper proposes a new rotational frequency detector (RFD) for phase-locked loop (PLL) or clock and data recovery (CDR) applications for fast frequency acquisition. The proposed RFD uses the four states finite state machine (FSM) model to accelerate the frequency acquisition time. It is modeled and simulated with MATLAB Simulink. The functionalities of the proposed RFD are examined and the results are compared to those of a conventional RFD. The proposed RFD's frequency acquisition time is four times faster than that of a conventional one. The proposed RFD incorporated with a phase detector (PD) in PLL or CDR is expected to improve the frequency and phase acquisition performance later greatly.

The Fast Signal Acquisition Scheme for a GPS Ll/L2C Correlator (GPS Ll/L2C 상관기를 위한 빠른 신호 획득 기법)

  • Lim Deok-Won;Moon Sung-Wook;Park Chan-Sik;Lee Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.765-772
    • /
    • 2006
  • The L2 Civil Signal (L2CS) will be transmitted by modernized IIR(IIR-M), IIF and all subsequent GPS satellites. It contains two codes of different length; CM code contains 10,230chips, repeats every 20milliseconds and is modulated with message data, and CL code contains 767,250chips, repeats every 1.5second Z-count and has no data modulation. And the message data is encoded for Forward Error Correction(FEC). The long code length is useful for weak signal, but it also requires very long acquisition time. Therefore, the structure of GPS Ll/L2C Correlator and the fast acquisition scheme are proposed in this paper.

Ultra-Fast L2-CL Code Acquisition for a Dual Band GPS Receiver

  • Kim, Binhee;Kong, Seung-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.4
    • /
    • pp.151-160
    • /
    • 2015
  • GPS L2C signal is a recently added civil signal to L2 frequency and is constructed by time division multiplexing of civil moderate (L2-CM) and civil long (L2-CL) code signals. While the L2-CM code is 20 ms-periodic and modulates satellite navigation message, the L2-CL code is 1.5s-periodic with 767,250 chips long code sequence and carries no data. Therefore, the L2-CL code signal allows receivers to perform a very long coherent integration. However, due to the length of the L2-CL code, the acquisition of the L2-CL code signal may take too long or require too much hardware resources. In this paper, we propose a three-step ultra-fast L2-CL code acquisition (TSCLA) technique for dual band GPS receivers. In the proposed TSCLA technique, a dual band GPS receiver sequentially acquires the coarse/acquisition (C/A) code signal at L1 frequency, the L2-CM code signal, and the L2-CL code signal to minimize mean acquisition time (MAT). The theoretical performance analysis and numerous Monte Carlo simulations show the significant advantage of the proposed TSCLA technique over conventional techniques introduced in the literature.

Single Pixel Compressive Camera for Fast Video Acquisition using Spatial Cluster Regularization

  • Peng, Yang;Liu, Yu;Lu, Kuiyan;Zhang, Maojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5481-5495
    • /
    • 2018
  • Single pixel imaging technology has developed for years, however the video acquisition on the single pixel camera is not a well-studied problem in computer vision. This work proposes a new scheme for single pixel camera to acquire video data and a new regularization for robust signal recovery algorithm. The method establishes a single pixel video compressive sensing scheme to reconstruct the video clips in spatial domain by recovering the difference of the consecutive frames. Different from traditional data acquisition method works in transform domain, the proposed scheme reconstructs the video frames directly in spatial domain. At the same time, a new regularization called spatial cluster is introduced to improve the performance of signal reconstruction. The regularization derives from the observation that the nonzero coefficients often tend to be clustered in the difference of the consecutive video frames. We implement an experiment platform to illustrate the effectiveness of the proposed algorithm. Numerous experiments show the well performance of video acquisition and frame reconstruction on single pixel camera.

256-channel 1ks/s MCG Signal Acquisition System (256-channel 1 ksamples/sec 심자도 신호획득 시스템)

  • Lee, Dong-Ha;Yoo, Jae-Tack;Huh, Young
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.538-540
    • /
    • 2004
  • Electrical currents generated by human heart activities create magnetic fields represented by MCG(MagnetoCardioGram). Since an MCG signal acquisition system requires precise and stable operation, the system adopts hundreds of SQUID(Superconducting QUantum Interface Device) sensors for signal acquisition. Such a system requires fast real-time data acquisition in a required sampling interval, i.e., 1 mili-second for each sensor. This paper presents designed hardware to acquire data from 256-channel analog signal with 1 ksamples/sec speed, using 12-bit 8-channel ADC devices, SPI interfaces, parallel interfaces, 8-bit microprocessors, and a DSP processor. We implemented SPI interface between ADCs and a microprocessor, parallel interfaces between microprocessors. Our result concludes that the data collection can be done in $168{\mu}sec$ time-interval for 256 SQUID sensors, which can be interpreted to 6 ksamples/sec speed.

  • PDF

A Study on the Design of PLL for Improving of Characteristics of Locking Time and Jitter (Locking Time과 Jitter 특성의 개선을 위한 PLL 설계에 관한 연구)

  • Park, Jae-Boum;Park, Yun-Sik;Kim, Hwa-Young;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1188-1191
    • /
    • 2003
  • In this paper, we focus our attention on the improvement of locking time and jitter parameter and propose the new structure of PLL which combined with the FVC, FOVI Matcher(FVC-Output and VCO-input Matching Circuit), Control Circuit and the conventional charge pump PLL. Using fast operation characteristics of the FVC, the circuit matching FVC-Output and VCO-input (FOVI Matcher) made to synchronize very fast. Fast locking time is usually required for application where the PLL has to settle rapidly if they switch from an idle mode to a normal mode and to track high-frequency data bit rate in data recovery systems. After a fast acqusition is achieved by the using the FVC, the conventional PLL operates for removing the phase error between the reference signal and the feedback signal. Therefore this structure can improve the trade-off between acquisition behavior and locked behavior.

  • PDF

Speedup Technique of FFT based Signal Acquisition at Software-based GNSS Receiver

  • Yuasa, Jun-Ichi;Kondou, Shun-Ichiro;Kubo, Nobuaki;Yasuda, Akio
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.399-403
    • /
    • 2006
  • Software-based GNSS receivers have the great advantage in flexibility compared with conventional receivers. But it has some problems to processing IF level Signal RAW data, need long time to process long term data and TTFF is long because the process is too slow. So this time, we concentrated on the signal acquisition, and examined the speedup technique. Using this technique, the acquisition was speedup dramatically, and signal-to-noise ratio was improved.

  • PDF

An Acquisition and Analysis Equipment of Dynamic/Static Data on a Rotating Vibration (회전체 진동 데이터의 AC/DC 성분 데이터 획득 및 분석 장치)

  • Lee, Jung Suk;Ryu, Deung Ryeol;Lee, Cheol
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.127-137
    • /
    • 2009
  • This paper is proposed that in-output Digital module is acquired a vibration signal of a rotating machinery by Data Acquisition System. The module is designed to get ride of nose through low pass filter on the vibration signal from sensors and set the gain value for being able to sampling AC to DC, and also the sampled data by sampler and the conversed data by DIP/FPGA is supplied to the analyzer for analysis at a software tool. The DIP(Digital Signal Processor) of the Digital input/output Board makes Average voltage, Peak to Peak voltage, RMS(Root Mean Square) and Gap voltage, also FFT(Fast Fourier Transform) for rotating vibration diagnosis.

Analysis of GPS Signal Acquisition Performance

  • Li, Xiaofan;Manandhar, Dinesh;Shibasaki, Ryosuke
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.229-234
    • /
    • 2006
  • Acquisition is to detect the presence of the GPS signal. Once the signal is detected, the estimated frequency and code phase are passed to a tracking loop to demodulate the navigation data. In order to detect the weak signal, multiple length of data integration is always needed. In this paper, we present five different acquisition approaches based on circular correlation and Fast Fourier Transform (FFT), using coherent as well as non-coherent integration techniques for the multiple length of collected GPS satellite signal. Moreover a general approach of determining the acquisition threshold is introduced based on noise distribution which has been proved effective, and independent of the hardware. In the end of this paper, the processing speed and acquisition gain of each method are illustrated, compared, and analyzed. The results show that coherent approach is much more time consuming compared to noncoherent approaches, and in the case of multiple length of data integration from 2ms to 8ms, the processing times consumed by the fastest non-coherent acquisition method are only 25.87% to 1.52% in a single search, and 34.76% to 1.06% in a global search of those in the coherent acquisition. However, coherent acquisition also demonstrates its better performance in the acquisition gain, and in the case of 8ms of data integration it is 4.23 to 4.41 dB higher than that in the non-coherent approaches. Finally, an applicable scheme of combining coherent and non-coherent acquisition approaches in the development of a real-time Software GPS receiver in the University of Tokyo is provided.

  • PDF

Accuracy Analysis of Road Surveying and Construction Inspection of Underpass Section using Mobile Mapping System

  • Park, Joon Kyu;Um, Dae Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.103-111
    • /
    • 2021
  • MMS (Mobile Mapping System) is being used for HD (High Definition) map construction because it enables fast and accurate data construction, and it is receiving a lot of attention. However, research on the use of MMS in the construction field is insufficient. In this study, road surveying and inspection of construction structures were performed using MMS. Through data acquisition and processing using MMS, point cloud data for the study site was created, and the accuracy was evaluated by comparing with traditional surveying methods. The accuracy analysis results showed a maximum of 0.096m, 0.091m, and 0.093m in the X, Y, and H directions, respectively. Each RMSE was 0.012m, 0.015m, and 0.006m. These result satisfy the accuracy of topographic surveying in the general survey work regulation, indicating that construction surveying using MMS is possible. In addition, a 3D model was created using the design data for the underpass road, and the inspection was performed by comparing it with the MMS data. Through inspection results, deviations in construction can be visually confirmed for the entire underground roadway. The traditional method takes 6 hours for the 4.5km section of the target area, but MMS can significantly shorten the data acquisition time to 0.5 hours. Accurate 3D data is essential data as basic data for future smart construction. With MMS, you can increase the efficiency of construction sites with fast data collection and accuracy.