• Title/Summary/Keyword: Fast K-means based on hisgoram image segmentation

Search Result 1, Processing Time 0.016 seconds

A study on image segmentation for depth map generation (깊이정보 생성을 위한 영상 분할에 관한 연구)

  • Lim, Jae Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.707-716
    • /
    • 2017
  • The advances in image display devices necessitate display images suitable for the user's purpose. The display devices should be able to provide object-based image information when a depthmap is required. In this paper, we represent the algorithm using a histogram-based image segmentation method for depthmap generation. In the conventional K-means clustering algorithm, the number of centroids is parameterized, so existing K-means algorithms cannot adaptively determine the number of clusters. Further, the problem of K-means algorithm tends to sink into the local minima, which causes over-segmentation. On the other hand, the proposed algorithm is adaptively able to select centroids and can stand on the basis of the histogram-based algorithm considering the amount of computational complexity. It is designed to show object-based results by preventing the existing algorithm from falling into the local minimum point. Finally, we remove the over-segmentation components through connected-component labeling algorithm. The results of proposed algorithm show object-based results and better segmentation results of 0.017 and 0.051, compared to the benchmark method in terms of Probabilistic Rand Index(PRI) and Segmentation Covering(SC), respectively.