• Title/Summary/Keyword: Fas-ligand

Search Result 71, Processing Time 0.029 seconds

Induction of Forkhead Class box O3a and apoptosis by a standardized ginsenoside formulation, KG-135, is potentiated by autophagy blockade in A549 human lung cancer cells

  • Yao, Chih-Jung;Chow, Jyh-Ming;Chuang, Shuang-En;Chang, Chia-Lun;Yan, Ming-De;Lee, Hsin-Lun;Lai, I-Chun;Lin, Pei-Chun;Lai, Gi-Ming
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.247-256
    • /
    • 2017
  • Background: KG-135, a standardized formulation enriched with Rk1, Rg3, and Rg5 ginsenosides, has been shown to inhibit various types of cancer cells; however, the underlying mechanisms are not fully understood. In this study, we explored its effects in A549 human lung cancer cells to investigate the induction of Forkhead Class box O3a (FOXO3a) and autophagy. Methods: Cell viability was determined by sulforhodamine B staining. Apoptosis and cell cycle distribution were analyzed using flow cytometry. The changes of protein levels were determined using Western blot analysis. Autophagy induction was monitored by the formation of acidic vesicular organelles stained with acridine orange. Results: KG-135 effectively arrested the cells in G1 phase with limited apoptosis. Accordingly, a decrease of cyclin-dependent kinase-4, cyclin-dependent kinase-6, cyclin D1, and phospho-retinoblastoma protein, and an increase of p27 and p18 proteins were observed. Intriguingly, KG-135 increased the tumor suppressor FOXO3a and induced the accumulation of autophagy hallmark LC3-II and acidic vesicular organelles without an increase of the upstream marker Beclin-1. Unconventionally, the autophagy adaptor protein p62 (sequestosome 1) was increased rather than decreased. Blockade of autophagy by hydroxychloroquine dramatically potentiated KG-135-induced FOXO3a and its downstream (FasL) ligand accompanied by the cleavage of caspase-8. Meanwhile, the decrease of Bcl-2 and survivin, as well as the cleavage of caspase-9, were also drastically enhanced, resulting in massive apoptosis. Conclusion: Besides arresting the cells in G1 phase, KG-135 increased FOXO3a and induced an unconventional autophagy in A549 cells. Both the KG-135-activated extrinsic FOXO3a/FasL/caspase-8 and intrinsic caspase-9 apoptotic pathways were potentiated by blockade of autophagy. Combination of KG-135 and autophagy inhibitor may be a novel strategy as an integrative treatment for cancers.

Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROS-dependent inactivation of the PI3K/Akt signaling pathway

  • Park, Cheol;Choi, Eun Ok;Hwangbo, Hyun;Lee, Hyesook;Jeong, Jin-Woo;Han, Min Ho;Moon, Sung-Kwon;Yun, Seok Joong;Kim, Wun-Jae;Kim, Gi-Young;Hwang, Hye-Jin;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • 제16권3호
    • /
    • pp.330-343
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Zanthoxylum schinifolium is traditionally used as a spice for cooking in East Asian countries. This study was undertaken to evaluate the anti-proliferative potential of ethanol extracts of Z. schinifolium leaves (EEZS) against human bladder cancer T24 cells. MATERIALS/METHODS: Subsequent to measuring the cytotoxicity of EEZS, the anti-cancer activity was measured by assessing apoptosis induction, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP). In addition, we determined the underlying mechanism of EEZS-induced apoptosis through various assays, including Western blot analysis. RESULTS: EEZS treatment concentration-dependently inhibited T24 cell survival, which is associated with apoptosis induction. Exposure to EEZS induced the expression of Fas and Fas-ligand, activated caspases, and subsequently resulted to cleavage of poly (ADP-ribose) polymerase. EEZS also enhanced the expression of cytochrome c in the cytoplasm by suppressing MMP, following increase in the ratio of Bax:Bcl-2 expression and truncation of Bid. However, EEZS-mediated growth inhibition and apoptosis were significantly diminished by a pan-caspase inhibitor. Moreover, EEZS inhibited activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway, and the apoptosis-inducing potential of EEZS was promoted in the presence of PI3K/Akt inhibitor. In addition, EEZS enhanced the production of ROS, whereas N-acetyl cysteine (NAC), a ROS scavenger, markedly suppressed growth inhibition and inactivation of the PI3K/Akt signaling pathway induced by EEZS. Furthermore, NAC significantly attenuated the EEZS-induced apoptosis and reduction of cell viability. CONCLUSIONS: Taken together, our results indicate that exposure to EEZS exhibits anti-cancer activity in T24 bladder cancer cells through ROS-dependent induction of apoptosis and inactivation of the PI3K/Akt signaling pathway.

인체 방광암세포에서 histone deacetylase 억제제인 sodium butyrate이 TRAIL에 의한 apoptosis 유도에 미치는 영향 (Effects of Sodium Butyrate, a Histone Deacetylase Inhibitor, on TRAIL-mediated Apoptosis in Human Bladder Cancer Cells)

  • 한민호;최영현
    • 생명과학회지
    • /
    • 제26권4호
    • /
    • pp.431-438
    • /
    • 2016
  • TRAIL은 정상세포에서는 세포독성을 나타내지 않는 반면, 암세포에서는 사멸을 유도하므로 항암제로 각광받고 있지만 많은 암세포에서 TRAIL에 저항성을 가지고 있는 것으로 알려져 있으므로 이를 극복해야하는 큰 어려움이 남아있다. 본 연구에서는 TRAIL에 저항성을 가지는 인간 방광암 세포주인 5637 세포를 이용하여 histone deacetylase 억제제인 sodium butyrate (SB)와 TRAIL을 혼합처리하였을 경우 유발되는 세포사멸 효과와 이와 관련된 분자생물학적 메카니즘을 연구하였다. 세포독성이 없는 조건의 TRAIL과 SB를 혼합처리 하였을 경우 SB 단독처리군 보다 세포사멸이 현저하게 증가하는 것으로 확인되었다. TRAIL과 SB의 혼합처리는 caspases (caspase-3, -8 and -9)의 활성화 및 PARP의 단편화를 유발하였다. 하지만 caspase 억제제에 의하여 TRAIL과 SB의 혼합처리에 의하여 유발되는 apoptosis가 현저하게 억제되는 것으로 나타났다. 또한 TRAIL과 SB의 혼합처리는 세포표면에 존재하는 DR5의 발현 증가 및 c-FLIP의 발현 감소를 유발하였으며, pro-apoptotic protein인 Bax와 세포질 cytochrome c의 발현 증가 및 anti- apoptotic protein인 Bcl-xL의 발현감소와 함께 tBid의 형성을 유발하였다. 이는 SB와 TRAIL의 혼합처리가 안전하고 선택적으로 TRAIL에 저항성을 가지는 방광암 세포에서 치료하는데 효과적인 전략임을 제시하는 결과이다.

The Histone Deacetylase Inhibitor Trichostatin A Sensitizes Human Renal Carcinoma Cells to TRAIL-Induced Apoptosis through Down-Regulation of c-FLIPL

  • Han, Min Ho;Park, Cheol;Kwon, Taek Kyu;Kim, Gi-Young;Kim, Wun-Jae;Hong, Sang Hoon;Yoo, Young Hyun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • 제23권1호
    • /
    • pp.31-38
    • /
    • 2015
  • Histone acetylation plays a critical role in the regulation of transcription by altering the structure of chromatin, and it may influence the resistance of some tumor cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) by regulating the gene expression of components of the TRAIL signaling pathway. In this study, we investigated the effects and molecular mechanisms of trichostatin A (TSA), a histone deacetylase inhibitor, in sensitizing TRAIL-induced apoptosis in Caki human renal carcinoma cells. Our results indicate that nontoxic concentrations of TSA substantially enhance TRAIL-induced apoptosis compared with treatment with either agent alone. Cotreatment with TSA and TRAIL effectively induced cleavage of Bid and loss of mitochondrial membrane potential (MMP), which was associated with the activation of caspases (-3, -8, and -9) and degradation of poly (ADP-ribose) polymerase (PARP), contributing toward the sensitization to TRAIL. Combined treatment with TSA and TRAIL significantly reduced the levels of the cellular Fas-associated death domain (FADD)-like interleukin-$1{\beta}$-converting enzyme (FLICE) inhibitory protein (c-FLIP), whereas those of death receptor (DR) 4, DR5, and FADD remained unchanged. The synergistic effect of TAS and TRAIL was perfectly attenuated in c-$FLIP_L$-overexpressing Caki cells. Taken together, the present study demonstrates that down-regulation of c-FLIP contributes to TSA-facilitated TRAIL-induced apoptosis, amplifying the death receptor, as well as mitochondria-mediated apoptotic signaling pathways.

종양세포의 사멸에 있어서의 activated protein C의 효과 (Effect of Activated Protein C (APC) on Apoptosis of Cancer Cells)

  • 민경진;배종섭;권택규
    • 생명과학회지
    • /
    • 제22권5호
    • /
    • pp.697-701
    • /
    • 2012
  • 본 연구에서는 항응고제로서의 역할을 가지면서 또한 혈액응고와는 관련 없는 종양세포의 전이 등을 조절하는 것으로 알려진 activated protein C (APC)가 종양세포의 사멸에는 어떠한 영향을 미치는 지에 대한 연구를 수행하였다. Tumor necrosis factor (TNF)-${\alpha}$와 cyclohexamide를 병합 처리하거나 FAS를 처리하게 되면 인간 신장암세포인 Caki에서는 유의적인 세포사멸이 일어난다. 하지만, APC는 이러한 세포사멸에 아무런 영향을 미치지 못하였다. 또한 TRAIL을 인간 뇌 암세포인 T98G와 유방암세포인 MDA231세포에 처리하여 세포사멸을 일으켰을 때에도 APC는 세포사멸을 조절하지 못하였다. 그러나, TRAIL에 대한 민감도를 증가시키기 위한 kahweol과 TRAIL의 병합처리나, kahweol과 malatonin의 병합처리에 의한 신장암세포의 사멸은 APC에 의해 유의적으로 억제되는 것을 확인하였다. 따라서, 이는 APC가 항암치료의 효율성을 조절 할 수 있는 가능성을 가짐을 의미한다.

Protective effects of red ginseng extract against vaginal herpes simplex virus infection

  • Cho, Ara;Roh, Yoon Seok;Uyangaa, Erdenebileg;Park, Surim;Kim, Jong Won;Lim, Kyu Hee;Kwon, Jungkee;Eo, Seong Kug;Lim, Chae Woong;Kim, Bumseok
    • Journal of Ginseng Research
    • /
    • 제37권2호
    • /
    • pp.210-218
    • /
    • 2013
  • Numerous studies have suggested that Korean red ginseng (KRG) extract has various immune modulatory activities both in vivo and in vitro. In this study, we used a mouse model to examine the effects of orally administered KRG extract on immunity against herpes simplex virus (HSV). Balb/c mice were administered with 100, 200, and 400 mg/kg oral doses of KRG extract for 10 d and then vaginally infected with HSV. We found that KRG extract rendered recipients more resistant against HSV vaginal infection and further systemic infection, including decreased clinical severity, increased survival rate, and accelerated viral clearance. Such results appeared to be mediated by increased vaginal IFN-${\gamma}$ secretion. Moreover, increased mRNA expression of IFN-${\gamma}$, granzyme B, and Fas-ligand was identified in the iliac lymph node and vaginal tracts of KRG extract treated groups (200 and 400 mg/kg). These results suggest that the activities of local natural killer cells were promoted by KRG extract consumption and that KRG may be an attractive immune stimulator for helping hosts overcome HSV infection.

Arctigenin induces caspase-dependent apoptosis in FaDu human pharyngeal carcinoma cells

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Lim, HyangI;Seo, Jeong-Yeon;Park, Jong-Hyun;Chun, Hong Sung;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Kim, Do Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권6호
    • /
    • pp.447-456
    • /
    • 2022
  • The present study was carried out to investigate the effect of Arctigenin on cell growth and the mechanism of cell death elicited by Arctigenin were examined in FaDu human pharyngeal carcinoma cells. To determine the apoptotic activity of Arctigenin in FaDu human pharyngeal carcinoma cells, cell viability assay, DAPI staining, caspase activation analysis, and immunoblotting were performed. Arctigenin inhibited the growth of cells in a dose-dependent manner and induced nuclear condensation and fragmentation. Arctigenin-treated cells showed caspase-3/7 activation and increased apoptosis versus control cells. FasL, a death ligand associated with extrinsic apoptotic signaling pathways, was up-regulated by Arctigenin treatment. Moreover, caspase-8, a part of the extrinsic apoptotic pathway, was activated by Arctigenin treatments. Expressions of anti-apoptotic factors such as Bcl-2 and Bcl-xL, components of the mitochondria-dependent intrinsic apoptosis pathway, significantly decreased following Arctigenin treatment. The expressions of pro-apoptotic factors such as BAX, BAD and caspase-9, and tumor suppressor -53 increased by Arctigenin treatments. In addition, Arctigenin activated caspase-3 and poly (ADP-ribose) polymerase (PARP) induced cell death. Arctigenin also inhibited the proliferation of FaDu cells by the suppression of p38, NF-κB, and Akt signaling pathways. These results suggest that Arctigenin may inhibit cell proliferation and induce apoptotic cell death in FaDu human pharyngeal carcinoma cells through both the mitochondria-mediated intrinsic pathway and the death receptor-mediated extrinsic pathway.

대장상피세포 속 Wnt 신호 경로에 대한 C. difficile 톡신A의 영향 (Clostridium difficile Toxin A Inhibits Wnt Signaling Pathway in Gut Epithelial Cells)

  • 윤이나;김호
    • 생명과학회지
    • /
    • 제28권9호
    • /
    • pp.1016-1021
    • /
    • 2018
  • C. difficile 톡신A에 의한 대장상피세포 자살과정은 위막성대장염(Pseudomembranous colitis)의 주요 원인으로 고려되고 있다. 톡신A는 활성산소 를 증가시켜 세포자살 신호를 유도한다. 또한 톡신A는 미세섬유나 미세소관과 같은 세포골격계 형성을 저해함으로써 자살을 유도한다고 알려져 있다. 하지만 톡신A가 야기하는 소화기 상피세포 자살경로는 아직 불분명하다. 본 연구에서는 소화관 상피세포의 성장과 분화 그리고 기능에 중요하다고 알려져 온 Wnt 신호경로에 대한 톡신A의 영향을 확인해보았다. 이를 위해 비암화-인간대장세포주(NCM460)에 톡신A를 처치하고 Wnt 신호 분자들의 변화를 추적하였다. 또한 톡신A를 주입한 생쥐의 회장 상피세포 속 Wnt 신호경로 변화도 평가하였다. 인간 대장상피세포에서 톡신A는 Wnt 경로의 핵심 신호분자인 ${\beta}$-catenin 단백질의 양을 빠르게 감소시켰다. 이 현상은 생쥐 회장 상피세포에서도 동일하게 확인되었다. 연구자 등은 톡신A가 $GSK3{\beta}$ 활성형 인산화(Thr390)를 증가시킴도 확인하였다. 이는 톡신A가 $GSK3{\beta}$의 활성을 높여서 ${\beta}$-catenin의 인산화시키고 이를 통해 단백질 분해 과정이 촉진되었음을 보여준다. 이 결과들을 종합하면, 톡신A에 의한 소화관 상피세포 자살과정이 상피세포의 성장과 자살을 조절하는 Wnt 신호경로 차단과 밀접하게 연관되어 있음을 보여준다.

3형 아데노바이러스의 면역조절 유전자 다양성 (Genetic Variation in the Immunoregulatory Gene of Adenovirus Type 3)

  • 최은화;김희섭;이환종
    • Pediatric Infection and Vaccine
    • /
    • 제16권2호
    • /
    • pp.199-204
    • /
    • 2009
  • 목 적: 아데노바이러스 early region 3 (E3) 유전자 단백은 세포독성 세포와 다양한 싸이토카인이 매개하는 세포파괴를 저해하는 기능을 한다. 본 연구는 E3 유전자의 다양성이 아데노바이러스의 분자생물학적 다양성을 설명할 수 있는지 밝히기 위하여 시행되었다. 방 법: 1990년부터 2000년까지 10년 동안 서울대학교 어린이병원에서 하기도 감염증으로 치료받은 소아로부터 분리 된 3형 아데노바이러스 14 주를 대상으로 하여 E3 유전자의 변이와 유전체형과의 연관성을 분석하였다. 결 과: 3형 아데노바이러스의 E3 유전자는 표준 주(M15952)와 비교하여 98%의 일치도를 보였으며, 국내 분리 주간의 일치도는 98.7%이었다. 아미노산 서열의 변이는 20.1 kDa, 20.6kDa, truncated 7.7 kDa, 10.3 kDa, 14.9 kDa, 그리고 15.3kDa에 나타났다. 또한, 14 주 모두에서 truncated 7.7 kDa의 시작 코돈에 missense 변이가 있었으며, 58개(10주) 혹은 94개(4주)의 염기쌍이 소실되는 변이가 동반되었다. 유전체형에 따른 E3 유전자의 변이는 대개 유전체형에 특이하게 나타나 연관성이 높은 것을 알 수 있었다. 결 론: 3형 아데노바이러스 주의 면역기능 조절 유전자 E3의 다양성은 유전체형과의 연관성이 높은 것으로 나타났다.

  • PDF

Modern diagnostic capabilities of neonatal screening for primary immunodeficiencies in newborns

  • Khalturina, Evgenia Olegovna;Degtyareva, Natalia Dmitrievna;Bairashevskaia, Anastasiia Vasi'evna;Mulenkova, Alena Valerievna;Degtyareva, Anna Vladimirovna
    • Clinical and Experimental Pediatrics
    • /
    • 제64권10호
    • /
    • pp.504-510
    • /
    • 2021
  • Population screening of newborns is an extremely important and informative diagnostic approach that allows early identification of babies who are predisposed to the development of a number of serious diseases. Some of these diseases are known and have effective treatment methods. Neonatal screening enables the early diagnosis and subsequent timely initiation of therapy. This helps to prevent serious complications and reduce the percentage of disability and deaths among newborns and young children. Primary immunodeficiency diseases and primary immunodeficiency syndrome (PIDS) are a heterogeneous group of diseases and conditions based on impaired immune system function associated with developmental defects and characterized by various combinations of recurrent infections, development of autoimmune and lymphoproliferative syndromes (genetic defects in apoptosis, gene mutation Fas receptor or ligand), granulomatous process, and malignant neoplasms. Most of these diseases manifest in infancy and lead to serious illness, disability, and high mortality rates. Until recently, it was impossible to identify children with PIDS before the onset of the first clinical symptoms, which are usually accompanied by complications in the form of severe coinfections of a viral-bacterial-fungal etiology. Modern advances in medical laboratory technology have allowed the identification of children with severe PIDS, manifested by T- and/or B-cell lymphopenia and other disorders of the immune system. This review discusses the main existing strategies and directions used in PIDS screening programs for newborns, including approaches to screening based on excision of T-cell receptors and kappa-recombination excision circles, as well as the potential role and place of next-generation sequencing technology to increase the diagnostic accuracy of these diseases.